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ABSTRACT 

This paper discusses the use of regression analysis applied 
to ecologic data for the study of the relationship between 
air quality and mortality. The first five sections describe 
the available ecologic data (mortality, age distributions, 
air pollution, and socio-economic status). The next four 
sections treat the application of regression techniques, 
where air quality and ecologic socio-economic measures are 
the independent variables and total mortality is the depen
dent variable. The last section presents results from anal
yses employing these same independent variables, with 
accident and stomach cancer mortality as the dependent vari
ables. 

Our purpose is to critically inspect the utility of regres
s ion methods to assess the health effects of air quality. 
Several, possibly acute, problems are noted. The existence 
of incomplete model bias, which potentially distorts regres
sion coefficients, is discussed. Results from analyses of 
the same data at different levels of geographic detail show 
little consistency with each other or with those of previ
ously published analyses. Separate analyses of different 
regions of the United States show no consistent pattern. 
Accident mortality, which has no known relationship with air 
quality, does in fact show some associations; stomach 
cancer, which has been shown to be associated with air pol
lution, yields no evidence of strong associations. 

The results indicate that ecologic regression analysis tech
niques do not provide easily interpreted results, particu
larly with respect to the individual person. Potential 
biases are identified that could cause statistical summaries 
obtained from ecologic analyses to be useless or misleading. 
Certainly, regression analyses on nationally collected 
ecologic data cannot be used to usefully infer causal rela
tionships between air pollution and mortality. 
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INTRODUCTION 

The relationship of air quality to disease has been 

extensively studied and still remains a fundamental health 

issue. One approach to studying this relationship combines 

measures of pollution, rates of mortality and linear regres

sion analysis applied to a series of defined geographic 

regions. Over a dozen research efforts fall into this class 

(e.a., [1] and [2]; see Ricci [3] for a complete :review). 

The present work attempts to use regression techniques to 

reproduce the results of others, particularly the work of 

Mendelsohn and Orcutt [l], and at the same time to delineate 

and discuss relevant methodologic issues. These issues 

include variable selection and bias, data completeness, data 

accuracy, and most importantly the validity of regress ion 

analysis applied to ecologic data (data aggregated on a geo

graphic basis). 

The assumptions and techniques of ordinary regress ion 

ana.lys i fl 

c.lassic 

variable 

are described in various places (e.g. , 

regression analysis postulates that 

is linearly related to a series of 

a 

[4)). The 

dependent 

independent 

vat iables all of which are measured on the same observa-

t.ional unit. However, data are often not available on a 

unit basis but exist as statistical summaries of collections 

of units such as means, medians, percentages and rates. A 

natural extension of regression techniques is to analyze 

these collections of units with the same methods developed 

for linear regression analysis. The typical ecologic 

approach to the study of the influence of pollution on 
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disease consists of analyzing a series of geographic units, 

using total mortality rates, air quality data and census

dar i ved socio-economic variables. Whether these types of 

data can be usefully employed to study air quality and 

health, and whether a regression model adequately reflects 

the complex relationships under study, are open questions. 

The following report consists of a series of more or 

less independent sections concerning the problems surround

ing ecologic regression analysis applied to the question of 

pollution and mortality. The exploration of issues relating 

to the ecologic data themselves, described in the first five 

sections, is followed by a critical application of regres

sion techniques to two sets of ecologic data. 
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DATA AND THE LINEAR REGRESSION MODEL 

Three governmental agencies, which are required to rou

tinely collect specific types of information, provided the 

principal data used in this report. Mortality data were 

tabulated from death certificate files at the National 

Center for Health Statistics (NCHS). Air quality data were 

extracted from records maintained by the Environmental Pro

tection Agency in the SAROAD (Star age and Retrieval of 

Aerometric Data) system. Each county in the United States 

was characterized with the use of variables from the U.S. 

County and City Data Book (5] of the U.S. Census Bureau. 

Some data concerning elevation and weather patterns were 

obtained from other sources [6]. 

The smallest possible common geographic area for compar

ing the three sources of data is the county, since the NCHS 

mortality data contain only the county of residence for each 

death certificate. 'l'hi s aggregation produced 3 082 county 

records. (Not all government agencies use exactly the same 

county definitions. For example, independent cities in Vir

ginia are sometimes considered separately and sometimes 

included with adjacent. counties.) An ecologic analysis of 

this county level data set is presented in this report. In 

addit.ion, it was desirable to analyze these same data at a 

geographic level other than the county, in order to compare 

our results with those of previous investigators [1). The 

second geographic JevEd chosen was the 1970 Census Public 

Use Sample (PUS) area, an aggregation of counties. 
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A complete description of the Census Public Use Sample 

is found in [7]. The geographic units of the PUS are groups 

of counties which are fairly homogeneous with respect to 

socio-economic status, and which divide the continental U.S. 

into 410 areas. Each area is defined so that its popula

tion exceeds 250,000 residents. For example, many large and 

sparsely populated counties in the western states like Mon

tana, Colorado, Nevada, and Utah are aggregated to form sin

gle PUS areas, whereas large urban counties such as Los 

Angeles, Cook (Chicago), St. Louis, and Baltimore are them

selves PUS areas. Comparisons between the county-level and 

PUS-level data are made throughout this report. 

Total mortality is our fundamental variable of interest. 

An average annual mortality rate for each county is calcu

lated by taking the number of deaths in each county for the 

period 1968 through 1972 (only half the deaths were recorded 

in 1972) and dividing by 4.5 times the 1970 county popula-

tion. Rates for sex-, race-, cause-, and age-specific 

categories were similarly calculated. 

primarily on total mortality rates, 

The analyses focused 

rather than cause-

specific rates, so that direct comparisons could be made 

with the other major ecologic investigations of air quality 

and mortality. (However, we present in addition some 

r esu 1 ts from the analysis of stomach cancer and ace ident 

mortality rates.) Mortality rates are subject to bias from a 

variety of sources and these biases have been adequately 

discussed elsewhere (e.g., [2] or [8]). Although mortality 

rates have shortcomings in the study of disease, they are 
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the only population-based health data that exist on a 

national basis and as such are a valuable resource. 

Seventeen variables reflecting the 1970 socio-economic 

situation in U.S. counties, four variables concerning county 

weather patterns, and one other variable (county elevation) 

serve as the measurements of variation associated with mor

tality rates that is not directly related to air pollution. 

A list of these variables is found in appendix A. The 

essence of a multivariate approach is the isolation of 

effects of specific variables (e.g. air pollution) from the 

influences of variables not of primary interest ("control" 

variables). The 22 variables listed in appendix A serve this 

"control" function. 

The air quality data consist of measurements on three 

pollutants total suspended particulate (TSP), sulfur 

dioxide ( S02), and nitrogen dioxide (N02) . These values 

were extracted from data collected at 6625 monitoring sta

tions operating during the three-year period 1974 through 

1976. County-level air pollution estimates were interpo-

lated from average values at individual monitoring stations. 

The air pollution estimates for the 410 PUS areas are 

population-weighted averages of the county level values. A 

detailed discussion of the air quality data and interpola

tion methods is contained in the section of this report 

entitled "Air Pollution Data." 

The analysis of the total mortality rates employing 22 

"control" variables and 3 air pollution measurements is 
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restricted to white males and white females 45 to 54 years 

of age. The analysis of other racial groups is not practi

cal since too few deaths occurred during the period 1968-72 

to calculate stable cbunty-level mortality rates nationwide. 

Analysis of other age-specific categories provides little 

additional information since mortality rates are highly 

correlated among age categories. Furthermore, the 25 

independent variables have the same values for each county 

or PUS level analysis regardless of the age category being 

considered. The only new information contained in an age-

specific analysis comes from the age-specific mortality 

rates themselves, which obviously differ within a geographic 

area. However, the average annual age-specific mortality 

rates for the four age categories 3 5-44, 45-54, 55-64, and 

65+ increase fairly linearly (actually geometrically), which 

implies that the age-specific analyses will differ very lit-

tle in statistical significance. 

The basis for a multivariate regression analysis is a 

linear model represented symbolically as 

bk are regression coefficients associated 

with each independent variable x1 , x2 , .•• ,xk. The depen-

dent variable y. is stochastic since the value represented 
I 

as e
1 

is assumed to be a random variable with specific pro

perties. For valid inferences to be made from the multiple 

regression structure, the following must be true: 

1) The e
1 

values are uncorrelated 
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2) 

3) 

(correlations (ei,ei) = 0); 

The e. values have a normal distribution; 
I 

The variance of the ei values is constant 

(variance (e;) = a2 ). 

The underlying structure of a regression analysis 

applied to mortality data (the dependent variable) can be 

investigated by checking for violations of the assumptions. 

statistical procedures do not generally exist to piove that 

the assumptions are fulfilled. Statistical summaries of the 

male and female mortality rates for both county and PUS data 

sets are given in Table 1. The measures of skewness and 

kurtosis reflect the structure of the population under 

investigation and for normally distributed data have 

expected values of zero. The 99.5% critical values are also 

g 1 ven in Table 1.. As can be seen, the observed values of 

skewness and kurtosis in all four columns are large in the 

sense that they are extremely unlikely to represent random 

deviations from zero. The measures of skewness and kurtosis 

indicate that mortality rates for ages 45-54 are skewed to 

the right (skewness > 0) , and the probab i 1 it ies associated 

with extrern~~ rates are larger than expected from normally 

distrihuted data (kurtosis >O). However, the assumption of 

a normally distributed dependent variable is generally con-

s1dered as not very critical to a regression analysis. 

Inferences made from approximately normally distributed data 

such as these mortality rates are not likely to be extremely 

rn is le,.-td ing. It should be noted that the assumptions about 

the structure of the dependent variable do not affect the 
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estimates made from the regression analysis but rather 

influence the statistical interpretation of these estimates 

(e.g., significance probabilities or p-values). 

A more critical issue involves the assessment of the 

residual values (i.e., the observed dependent variables 

minus the values predicted from the estimated regression 

equation [y - ;J). Data that reflect independent, normally 

distributed fluctuations about a linear model with the same 

variance (i.e., which satisfy the basic assumptions of a 

linear regression analysis) produce residual values that 

vary randomly about a mean of zero and have negligible rela

tionships to the independent variables. Figures 1 through 4 

show in standard deviation units the residual values from 

the regression analyses of males and females (discussed in 

detail later) plotted against the rank of county and PUS 

population sizes. The county-level analyses yield residual 

values that appear to be random deviations from a linear 

model except for the least populous rural counties, where 

extreme (beyond ± 3 standard deviations) residual values are 

observed. That is, no evidence exists to reject the 

hypothesis that a linear model adequately describes the 

county level mortality patterns, except for a few counties 

with the smallest populations. The PUS residual values show 

no trends with population size, which indicates that no 

strong evidence exists for 

regression assumptions for 

values (beyond ± 2 s.d.) 

violation of the basic linear 

the 410 PUS areas. Extreme 

occur with expected frequency 

(about 5%) and have no geographic pattern for county and PUS 
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regression analyses. Similarly, residual values plotted 

against other independent variables (not presented here) 

also appeared to be randomly distributed. Since no strong 

evidence exists that mortality rates do not adequately ful

fill the requirements for a dependent variable in a multiple 

regression analysis, transformations were not considered 

necessary, and each mortality rate was weighted equally in 

the following analyses. 
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AGE DISTRIBUTION 

Mortality rates increase geometrically after age 35, 

which complicates any comparison of groups with different 

age patterns. The 3082 U.S. counties do indeed differ with 

respect to age distribution. Most dramatically, large 

numbers of older individuals reside in Florida. Charlotte, 

Citrus, Highlands, Lake, Manatee, Martin, Pinellas, and 

Sarasota are Florida counties where the average age of the 

male and female residents exceeds 40 years of age (U.S. 1970 

average= 33.1 years). The counties with the youngest aver

age ages are found in Colorado (e.g., Adams-- males= 26.8 

and females = 27.3; Lake --- males = 27.5 and females = 

27.6). The total U.S. age distribution for males and 

females is shown in Table 2, along with the standard devia

tions associated with the county level age distributions. 

The correlations (Table 3) among the percentages of male 

residents in each of eleven age categories reflects the 

strong inter .related patterns of the U.S. county level age 

d i str i but ions (only males are presented since the correla

tions for females are essentially the same). Consecutive 

age categories are highly correlated (r large and positive) 

for both males and females. The proportion of older county 

residents P 65) is negatively correlated with the propor

tion of younger residents (( 14) for both sexes. For exam

ple, the proportion of residents greater than 85 years old 

is negatJvely correlated with the proportion of children 

under one year of age (r = -.173 for males and r = -.205 for 

females). These high correlations confirm the typical U.S. 
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pattern of single family units with children and older indi

viduals without children residing to some extent in dif

ferent geographic areas. 

The eleven categories reflecting the county age distri

butions for both males and females can be adequately summar

ized by two principal components, which are defined in 

appendix C. These two components reflect 75.5% (male) and 

78.1% (female) of the observed variation in nationwide age 

distributions. That is, the values of these two linear 

indices capitalize on the interrelationships in the county 

age structure to efficiently reflect differences in age dis

tribution. The coefficients associated with these two 

indices show that the first principal component is dominated 

by the influence of the proportions of individuals under age 

14, whereas the second component essentially measures the 

population over 55 years old. In the following analyses the 

percentage of children less than 5 years old and the percen

tage of individuals over 65 years old are used to summarize 

the countv and PUS level age distributions. These two meas

ures, 1 n particular the pro port ion of individuals over 65, 

have been cons i st.ent ly used in other ecologic regress ion 

analyses (e.q., [2)). The principal components indicate 

that little significant information is gained by adding 

other measures of age distribution. 

The bivariate nature of the U.S. age distribution is not 

wjdely recognized. Two previous ecologic regression anal--

yses relating air pollution to health ([1] and [2]) employed 

the percentage of older individuals residing in a geographic 
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area as an independent variable and were criticized for a 

"rather casual choice" [9]. However, this type of simple 

summary appears to be suprisingly efficient and, with inclu

sion of measures of the proportion of both young and old 

residents, adequately summarizes the entire age distribution 

of a geographic area. 
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URBAN VERSUS RURAL MORTALITY 

Urban/rural differences in mortality experience have 

been observed for specific areas of the United States [10] 

and for specific diseases [ 11). Urban excesses in overall 

mortality are consistent with the hypothesis that air pollu

tion has a measurable and general effect on the health of 

city dwellers where air quality is the poorest. This possi

ble relationship has been noted by others investigating the 

influences of air quality on health (e.g. [1) and [2]). 

County level data provide an opportunity to explicitly study 

urban/rural differences in total mortality. 

The total mortality pattern of each county is summarized 

by t.he expectation of life at birth, which is calculated 

from age-specific total mortality rates. Expectation of life 

.is defined as the average number of years that would be 

·lived by a cohort of people experiencing a specific pattern 

of mortality. The age-specific total mortality rates 

(196R-1972) for each county produce a single expectation of 

life. (For a general development, see [12).) 

A brief statistical summary of the U.S. expectation of 

life for males and females is given in Table 4. The coun

t i es with the longest. expectation of 1 if e (lowest over all 

mortality) for both males and females are located in 

midwestern states (Wisconsin, Minnesota, North Dakota, South 

Dakota, Nebraska, and Iowa (Figures 5 and 6). This pattern 

of low total mortality has been repeatedly observed and is 

thouqht· to be p.r imar ily related to the low frequency of 
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heart disease among specific ethnic groups. 

It is sometimes assumed that the low mortality of the 

rural midwest implies high mortality in the urban parts of 

the nation. For the years 1968-1972 the counties with the 

lowest expectation of life (highest mortality) are also 

small and rural. Males have the shortest expectation of 

life in the southeast (particularly the Atlantic coast coun

ties of North Carolina, South Carolina and Georgia) and in 

the Appalachian mountains. The counties with the lowest 

expectation of life for females are scattered more or less 

r andom1y throughout the U.s. but are also small and rural 

(Figures 5 and 6). 

In summary, no strong association is found between life 

expect.ancy and two measures of urbanization -- population 

density and percentage of urban area within a county. The 

correlation coefficients are: 

males 

females 

population density 

r = .141 

r = -.025 

% urban 

r "' . 007 

r = -.060 

A more direct evaluation of counties with low expecta

tion of life is achieved by ranking the U.S. counties from 

low to high with respect to life expectancy. The ten lowest 

ranked counties are listed in Table SA (males) and Table 5B 

(females) along with the county populations and expectation 

of life. For both sexes, no urban county appears in the 

lowest ten counties. In fact, only two counties with large 
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urban populations are observed in the 200 lowest ranked 

counties (St. Louis City, MO and Schuylkill, PA). Further

more, among the 100 counties with the lowest expectation of 

life, more than 50% have no "urban centers" (defined by the 

U.S. Census Bureau as a place with more than 2,500 inhabi

tants), indicating that these counties are extremely rural. 

Taking into account the economic status of the U.S. 

counties produces a more meaningful picture of the relation

ship between expectation of life and degree of urbanization. 

When counties are stratified by median family income (Table 

6), only the wealthiest counties (those with less than 10 

per cent of t.he f ami 1 i es earning less than $3, 000) show no 

significant association between mortality and urbanization. 

The correlation coefficients measuring the association 

between expectation of life for these wealthier counties and 

population density are r -.070 (males) and r .003 

(females). For counties with greater than 10 percent of the 

famili.es earning less than $3,000 (Table 6), a negative 

correlation is observed between expectation of life and 

population density. This negative correlation becomes 

stronger as the percentage of families earning less than 

$3.000 increases. That 1s, shorter life expectancy is asso

ciated with more densely populated counties when the obscur

ing effect of economic status is held fairly constant. The 

strongest association is observed when more than 30 percent 

of the families earn less than $3,000 (r = -.287 for males 

and r ~ -.258 for females). An almost identical relation

ship (not shown here) is observed between expectation of 
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life and the percentage of urban area within a county. 

The urban/rural differences in life expectancy among the 

U.S. counties are largely a function of economic status. 

This fact demonstrates the critical necessity of controlling 

for confounding variables such as economic status, in order 

to achieve a clear picture of any influence of air quality. 
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AIR POLLUTION DATA 

Data from 6625 air quality monitoring stations active 

during the years 1974-76 produced the basic pollution data. 

These station values were combined in weighted averages to 

provide a summary air pollution measurement for each county. 

The weight for a specific station I is 

where f. is the fraction of time (proportional to the number 
I 

of observations) that station i was active, d. 
I 

is the dis-

tance from the monitoring station to the county geographic 

centroid, and d
0 

is a scaling parameter taken to be 20 

kilometers. 

estimated as 

The geometric mean level for a county is 

exp 
.t w' 

I 
log x. 

I 

w. 
I 

where x. is the geometric mean of measurements from station 
I 

i. Note that stations contributing to the county estimate 

are not necessarily located within that county. The choice 

of the weighting function and, particularly, the selection 

of the scaling parameter d
0 

result from subjective evalua

tions involving data ava iJ.abi 1 i ty r known data in cons is ten-

cies, average county sizer and pollution dispersion effects. 

Various choices of the scaling parameter were considered~ a 

detailed analysis is still in progress. The choice of d
0 

20 kilometers permits consistent and reasonable estimates of 

a1r quality levels for all counties with, and many counties 

without. active monitoring stations located within the 
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county boundaries. It appears that a smaller value, d
0 

about 10 kilometers, is appropriate for small area studies 

where monitoring station activity is rather high (13]. 

Estimates are calculated only if an active monitoring sta-

tion is present within 60 kilometers of the county centroid 

(i.e. d
1 

< 60 km). It was not possible to completely inves

tigate the validity and accuracy of the EPA pollution data, 

although many errors were found and corrected. However, 

averaging three years of data removes much of the variation 

and bias from cyclical sources such as weather patterns and 

seasonal trends. These three-year averages are constructed 

from the best available data and, hopefully, reflect the 

general air quality level of a county. 

To quantify the amount of data available, the monitoring 

density. evaluated at the population centroid of each county 

and expressed as effective full time stations per unit area, 

is calculated as 

density 

where w1 and d
0 

are the same as defined previously. (The 

monitoring density is considered to be zero if no active 

stations are present within 60 km of the county centroid.) 

The monitoring density, a continuous function, is normalized 

so that its area integral over the entire U.S .. 

J density dA 
us 

is equal to the total number of effective full time sta-

tions, 
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i=6625 
r: f i 

i=l 

The mqnitoring density for many counties and pollutants 

is zero; no estimates of pollutant concentration are avail-

able for these counties. Only three pollutants (TSP, S02, 

and N02) yield sufficient coverage of the United States to 

be included in the analysis without recourse to statistical 

missing value procedures. The total number of counties with 

non-zero monitoring densities for the three pollutants (TSP, 

S02, N02) is 1763 of a possible 3082 (57.2%). The inclusion 

of other pollutants would have caused the loss of a larger 

number of counties. The measurements of S02 and N02 levels 

are recorded either for one-hour sampling intervals or 24-

hour sampling periods depending on the sampling methods used 

at each monitoring station. For the purpose of this 

analysis, it is assumed that regardless of the sampling 

interval or method, the air quality measurements are 

unbiased estimates of the pollution levels, and the two sam-

pling intervals are treated as equivalent. Each station's 

mean value is weighted by the fraction of time the station 

was active, implying that each 24-hour measurement receives 

24 times the weight of a one·-hour measurement. Figures 7 

through ll show for each pollutant and sampling interval the 

distribution of the monitoring stations for the contiguous 

4R states. There were a total of 6625 stations active dur-

in9 1974·--1976. Of these, 5473 measured TSP, 3491 measured 

S02 ( 1051 in one-hour and 2440 in 24-hour intervals), and 

2149 measured N02 (353 in one-hour and 1796 in 24-hour 
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intervals). 

The effective monitoring density is high in 

populated areas and low in sparsely populated areas. 

densely 

Table 

7 gives the effective monitoring density (full-time stations 

per 1000 square kilometers, evaluated at the county popula

t 1on centroid) associated with large ( > 500, 000 persons) , 

medium (10,000 to 500,000 persons), and small (< 10,000 per

sons) counties. The monitoring density between counties 

with the large and small populations differs by a factor of 

40. Although the geographic area of the U.S. is not well 

covered by air quality monitoring stations, the vast major

ity of the U.S. population lives within 60 kilometers of 

one or more active stations. More precisely, only 1.5 per

cent. of the U.S. population lives more than 60 kilometers 

from a station that measured TSP during 197 4-76 (i.e. , in 

counties where no estimate of TSP level is available). The 

same figures for S02 and N02 are 7 percent and 11 percent 

respectively. The geometric mean concentrations of the 

three pollutants for each population size class are also 

gjven 

values. 

in Table 7, along with average minimum and maximum 

TSP levels do not differ much between counties with 

large or small populations, whereas the S02 and N02 mea-

surements show a more than twofold difference. 

A tendency for levels of different pollutants to be 

positively associated is not surprising. For the county 

level data, the correlations are: r = .312 (TSP-S02), r = 

.168 (TSP- N02), and r- .424 (S02- N02). The same corre

latJons for the PUS data are similar: r- .290 (TSP- S02), 
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r = .160 (TSP- N02), and r = .442 (TSP- S02). One impll

cation of this rather strong association among pollutants is 

that these three air pollution measurements can be viewed 

collectively as an index of general air quality. 

The estimates of air pollution levels for the PUS areas 

are weighted averages of the values for the counties located 

within the boundaries of the PUS areas. Two choices of 

weights were considered. The county values can be weighted 

by their effective monitoring densities, reflecting the 

amount of data associated with each pollutant value. Alter

natively, the county values can be weighted by the popula

tions potentially exposed to each pollution level. The jus

tification for the latter strategy is that in a study of 

human health, exposure is a critical element and should be 

taken into account as best possible. In fact, the results 

obtained from these two approaches hardly differ. The 

correlations between the data-weighted estimates and the 

population-weighted estimates are r = • 900 (TSP), r = • 921 

(S02), and r = .923 (N02). The population-weighted values 

were used in the following analyses. 

There are 410 PUS areas. Employing weighted averages of 

county values produced 386 areas (94.1%) with valid esti

mates for levels of all three pollutants. The monitoring 

densities and the average geometric means are shown in Table 

8. The monitoring densities are intermediate between the 

values observed for counties with medium and large popula

tions (Table 7). The pollution levels are also in the 

intermediate range and are somewhat less variable than in 
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the county level data. PUS areas are defined to be rather 

homogeneous areas with more than 250,000 inhabitants, which 

implies in most cases that the air quality levels should 

resemble those of counties with large populations. 
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PUBLIC USE SAMPLE DATA 

The authors of [1] used SES (socio-economic status) 

variables derived from the 1970 Census Public Use Sample 

(PUS). Use of the PUS is a potential source of efficiency 

but also of bias and statistical error. The Public Use Sam

ple is a 1% sample consisting of roughly two million U.S. 

census records; data are available only down to the level of 

the 410 PUS areas, which are county aggregates. The PUS 

data were sampled in a complicated stratified manner so that 

computation of sampling 

(The user ' s g u ide [ 7 ] 

errors is not easily accomplished. 

for the PUS contains a series of 

expressions for approximating the sampling errors.) 

In this section we compare two corresponding data files 

derived separately from the PUS and the 1970 Census Fourth 

Count summary tabulation. Direct comparison between the PUS 

data and the Fourth Count data aggregated into PUS areas 

will show any bias that may exist, and the magnitude of sam

pling errors. The Fourth Count tabulation, derived from a 

20% sample, provides data down to the census tract level, 

but due to 1 imitations in the mortality data t.her e is no 

advantage in going below the county level. 

Jn Table 9 we compare values of eighteen variables, at 

the geographic level of the 410 PUS areas. Column 1 con

tains data derived from the 1% PUS sample; column 3 contains 

corresponding data from the Fourth Count tabulation. aggre

gated from the county to the PUS level. The mean values and 

overall percentages show extremely close agreement for the 
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410 PUS areas. To further describe the differences among 

the PUS and aggregated Fourth Count data, Table 10 gives the 

absolute differences, relative differences and slopes (PUS 

values plot.ted against aggregated Fourth Count values). A 

slope of 1.0 indicates that no consistent bias exists 

between these two measures of the same quantity. The corre

lation coefficients summarizing the variability and the 

linear association between the two sources of data (not 

shown) are all greater than .98 except for the percentage of 

children less than one year of age ( r . 86) . No slope 

deviates from 1.0 by more than .04 units except, again, the 

percentage of children less than one year of age. Com

parison of these summaries leaves little doubt that the 

aggregated county data are faithfully reproduced by the sam

ple values from the PUS. Although no appreciable differ-· 

ences ex .i st between PUS data and aggregated Fourth Count 

data, the following PUS analyses involve aggregated Fourth 

rount data since they are more easily accessible and have a 

less complicated origin. 

The preceding analysis confirms only that the PUS file 

provides accurate and unbiased estimates of SES variables at 

the level of PUS areas. Elsewhere in this report we discuss 

the much more ser .ious object ions to analyzing data at the 

PUS rather than the county level; namely, the "ecologic fal-· 

lacv" and biases incurred through aggregation. 
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INCOMPLETE MODEL BIAS 

Estimates of regression coefficients from a linear 

regression analysis are affected by the choice of variables 

included in the linear model and excluded from the analysis. 

Only when all relevant variables are measured (full model) 

are the estimates of the regression coefficients unbiased. 

For example, if a three-variable linear model represented by 

Y; = a t b 1x1; t b 2x2i t b 3x3 i + ei 

describes the data under consideration but a two-variable 

version of the model 

Y i = a + b 1 x li t b 2x 2i + e i , 

(with x
3 

omitted) is used in the analysis, then the esti-

mates of the coefficients associated with 

x 1 and x 2 will be biased (i.e., the expected values of the 

estimates are not equal to b 1 and b 
2 

in the full model) . 

This phenomenon is called incomplete model bias. 

Claims have been made that this type of bias should be 

conservative [1], which implies that most estimates of the 

regression coefficients are always smaller when models are 

incomplete. Furthermore, differences found to be significant 

using conservative estimates from incomplete models would be 

even more significant if more complete models were used. 

Others claim that incomplete model bias exists only when the 

variables not included in the analysis are related to both 

the dependent variable and the independent variables [ 2]. 

For example, variables related to disease outcome but not to 
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air quality, such as cigarette smoking, will not affect the 

regress ion coefficients associated with air quality since 

smoking and air qualify are not directly related. The issue 

of incomplete model bias is important since most applied 

regression analyses necessarily omit some important sources 

of variation. 

The following numerical example, for which an algebraic 

p:roof is given in appendix B, illustrates incomplete model 

bias. This example is constructed to demonstrate that 

incomplete models do not necessarily produce conservative 

estimates and that generally all regression coefficients are 

affected when a variable is not included in the analysis. 

Consider three variables (x1 , K
2

, and K
3

) with the fol

lowing variance-covariance structure: 

xl x2 x3 

)(l a 2=16 1 (]12:::6 (]13=l 

)(2 (]2_4 
2- (]23= 2 

x3 a2
=9 3 

If the linear model is given by 

then the covariances ayl = 32, ay 2 = 22 and ay 3 = 41 result. 

If the variable x3 is omitted from the analysis, the biased 

estimates of the regression coefficients are b1 = -.14 and 

b 2 = 5.7. Note that b1 is substantially reduced and b2 is 

substantially increased relative to the true values 

b1=l and b2 =2. The variances of the estimates made from the 

t.wo--var iable model and a sample of size n are 
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2 2 o =20. 5/n and ab =82. 2/n 
0 1 2 

(assuming a2=25) which are about e 

five times larger than the variability under the full model 

( a2 =3. 8/n and a; =17. 2/n). An increase in variability asso-
. bl 1 

ciated with incomplete models will always occur (see Appen-

dix B) as long as the variable omitted is related to any of 

the independent variables or the dependent variable. An 

exact express ion for the amount of increase is given in 

appendix B. If x
3 

is unrelated to x1 but remains associ-

ated with the dependent variable (e.g., a 13 =0 and a =40) , 
y3 . 

then the following estimates result 

with variances 

(with x
3 

omitted): 

2 
ab =21.1/n and 

1 

a; =95. 8/n. Again, these estimates hardly resemble the true 
2 

parameters. 

This numerical example demonstrates two points: 

1) Incomplete model bias associated with the regression 

coefficients depends on the covariance structure and can 

either increase or decrease when variables are omitted from 

the analysis. Furthermore, statistical tests (t-test or F-

test "to remove") of the regression coefficients depend on 

the estimated variability which always increases when a 

model is incomplete. 

2) The fact that a variable is not related to some of 

the independent variables does not remove the potential for 

other estimated coefficients being affected by incomplete 

model bias. 
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In general, substantial incomplete model bias occurs 

when the variable omitted from the analysis is highly vari

able, unrelated to all independent variables, and strongly 

related to the dependent variable. The magnitude of incom

plete model bias in many applied situations will be small 

but nevertheless exists at an unknown level. 
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THE SQUARED MULTIPLE CORRELATION COEFFICIENT 

Fundamental to regression analysis is the squared multi

ple correlation coefficient, typically symbolized by R2 • 

This single number indicates the reliability of a linear 

model as a summary of a set of data. If R2 
= 1, a linear 

function totally explains the variation in the data. If 

R2 = 0, a linear model is useless as a summary. For values 

of R2 between zero and one the interpretation is not as 

simple. The difficulty lies in the fact that R2 is a com

plex composite measure of the fit of the data to a linear 

model which combines the variation of the dependent var i

able, the variation of the independent variables, and the 

values of the regression coefficients into a single number. 

In the case of an ecologic regression analysis with mor-

tality rates as the dependent variable, a choice must be 

made for the definition of the mortality rate. For example, 

mortality rates can be calculated for a variety of age- or 

sex-specific categories. This choice affects the value of 

R2 . Table 11 gives the squared multiple correlation coeffi-

cients for fifteen choices of the dependent variable, for 

the same set of independent variables -- namely the 22 con

trol variables listed in appendix A plus the three air qual

ity measurements. The smallest values of A
2 are associ-

at~ed with rates classified by ten-year age intervals among 

females (i.e., A2 = .424 for females 55-64). At the other 

extreme, if the crude mortality rates (combining both sexes 

and all ages greater than 35) are used, the R2 value is 
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.859, which implies that a linear model "explains" over 85% 

of the observed variation in the crude mortality rate. 

Not surprisingly, general mortality patterns are more 

predictable from ecologic variables than are specific pat-

terns, since mortality rates are known to depend upon a 

variety of general characteristics. Increased values of the 

regression coefficients are the principal reason for 

elevated R
2 values, despite the opposing influences from 

increases in variability of the dependent variable (column 3 

of Table 11). 

A value of the multiple correlation coefficient close to 

one (or at least greater than .5) often leads to the expli-

cit or implicit conclusion that the mathematical structure 

indicates causality. The reasoning behind the well-worn but 

often forgotten phrase "one can never prove anything with 

statistics (mathematical models)" is demonstrated by the 

following example. 

Let x and y represent the members of six pairs of 

numbers: 

X 10 8 5 5 2 1 

y 4 5 8 13 20 29 

A l1near regression analysis of X and y yields a squared 

multiple correlation coefficient of R2 .856, indicating 

that the linear model based on X predicts the data rather 

well. However, the "goodness of fit" is deceptive since the 
I 

y values were exactly generated by the expression y=4+z"" 
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where z = 0, l, 2, 3, 4, and 5, which does not involve x. 

The fact that x is associated with z makes x a good predic-

tor of y but not a direct "cause" of y. In multivariate as 

well as the simple univariate case, it must be kept in mind 

that large values of R2 indicate only predictability. The 

observed R2 values in many of the regression analyses 

described here exceed .50. Similar work by others (e.g. [1] 

and 2]) achieved R
2 values in the neighborhood of .80 and 

even a specific case of R2 
= .98 [2]. Nevertheless, a high 

degree of predictability does not guarantee that useful 

information can be extracted by analyzing the components of 

a mathematical model. 
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"CONTROL" VARIABLES 

The primary function 

(items 1-22 in Appendix A) 

statistically isolate the 

of the 22 "control" variables 

included in the analysis is to 

influences of air pollution by 

means of a multiple regression analysis from known sources 

of variation that affect mortality rates. Median family 

income, for example, is associated with mortality (r 

-.541) and also with air quality (r = .530 for N02) which 

spuriously decreases any observed association between air 

quality and mortality (r = - .131). Without a strategy to 

disentangle the influences of variables such as education, 

income and age, the effects of pollution on health would not 

be assessable. However, the direct influence on mortality 

from these 22 variables is of some interest. The ecologic 

regression approach should at least reproduce the well known 

relationships between mortality rates and variables charac

terizing socio-economic st~tus. 

The principal measure of the influence of a specific 

independent variable in a regression analysis is the regres

sion coefficient associated with that variable. A basic 

problem in the analysis of regression coefficients is that 

the magnitude of the coefficient depends on the units of 

measurement, which means that regression coefficients 

reflecting variables measured in different units are not 

dJrectly comparable. For example, income in dollars is not 

commensurate with temperature measured in degrees, so that 

direct comparison of the regression coefficients associated 

with these two variables is useless. A commensurate 
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measurement that makes possible the direct comparison of the 

contributions of specific variables to the total variation 

in mortality is the path coefficient invented by S. Wright 

(see Ref. [14]). A path coefficient P; is a standardized 

variable defined as 

where bi represents the regression coefficient associated 

with the ith variable, a. the standard deviation of that 
I 

independent variable, and a the standard deviation of the y 

dependent variable y. The numerator b.a. is the change in the 
I I 

dependent variable measured in standard deviations expected 

from a change of one standard deviation in the independent 

variable. The rate of change b.a. divided by a is unitless 
I I y 

and indicates the change expected in y per standard devia-

tion of y. The path coefficient for income (% ? $15, 000) 

is -.214, and the path coefficient for July temperature is 

.123. This shows that mortality varies inversely with 

income and directly with temperature, and that the influence 

of income on mortality is slightly less than twice the 

influence of July temperature. Since this report involves a 

large number of regression analyses, only the essential 

pieces of the many analyses relating the 25 independent 

variables to total mortality will be presented. 

Tables 12A (males) and l3A (females) contain the path 

coefficients for the 22 "control" variables for county and 

PUS level analyses. Amon9 males (Table 12A) the major con-

tr1butors to the regression equation for both county and PUS 
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analyses are variables relating to several dimensions of 

socio-economic status ( SES) . Four SES variables (percent 

black. percent over $15,000 income, percent four or more 

vears college, and percent in owner-occupied housing) have 

as!:wc iated pat.h coefficients greater than .15 in absolute 

value and are statistically significant (p < .02) predictors 

of mortality rates. 'fhe divorce rate shows a smaller but 

also statistically significant contribution (p = .073 for 

county and p = .109 for PUS). Three of the four variables 

characterizing climate (January temperature, January precip

itation, and July precipitation) have positive associations 

with male mortality, whereas July precipitation has a nega

tive association. The same trends are observed in the 

county and PUS analyses; three of the eight coefficients are 

statistically significant. The variables reflecting the age 

distribution (percent under 5 years old and percent over 65 

years old) have expectedly little influence since age

specific mortality rates were used. The measure of urbani

zation (percent urban) is statistically significant but 

t>howf; opposite 1nf luences for county level and PUS level 

analyses. The other "control" variables have small indivi

dual :i.nf luences on male mortality rates and are generally 

not statistically significant. 

The identical analyses for female mortality (Table l3A) 

yJeld. more or less, the same associations as those observed 

in males. Income-related variables again give the strongest 

A.Hf:oc: .tat i om;, although not as consistently as for males. 

The weather-related variables make significant contributions 

34 



to the variation in mortality (five of eight path coeffl-

cients are statistically significant). Once again, the 

county and PUS analyses show the opposite associations with 

the measure of urbanization (percent urban). 

The values of the regression path coefficients observed 

in nationwide data are averages over regional variation. 

Tables 12B-l2E (males) and 13B-13E (females) give the path 

coefficients from regression analyses for four separate 

regions. (West = federal regions 8, 9, and 10; Midwest = 

federal regions 5 and 7; South = federal regions 4 and 6; 

Northeast= federal regions 1, 2 and 3.) 

The results observed for males nationally (Table 12A) 

are repeated regionally (Tables 12B-12E) for some variables 

and not for others. Income, July temperature, and housing 

ownership have fairly consistent associations for the four 

regions studied for both PUS and county data. Other vari-

ables do not have such consistent associations with mortal-

ity rates. For example, the percentage of foreign residents 

has a positive association in the western region (p. = .372 
I 

for county and p 
j 

.066 for PUS) and a negative associa-

t ion in the southern area (pi = -.124 for county and pi 

-.369 for PUS) for the male mortality rates. 

The path coefficients resulting from the four regional 

analyses of the same 22 "control" variables and the female 

mortality rates (ages 45-54) are given in Tables l3B-l3E. 

The associations noted for males remain in the female 

regression analyses with a few exceptions, but more random 
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variation is apparent. Other comparisons can be made among 

the 10 analyses (Tables 12A-12E and 13A-13E), but the pri

mary focus is on the association between mortality and air 

quality with the variation from the 22 "control" variables 

statistically held constant. 
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AIR QUALITY REGRESSION COEFFICIENTS 

If an ecologic regression analysis of air quality and 

mortality rates is meaningful, then the central issue is the 

interpretation of the regression coefficients associated 

with the air pollution measurements -- TSP, S02, and N02. 

The combined influences of these three variables on the 

overall variation in nationwide total mortality rates is 

small but statistically significant both in the county and 

PUS analyses (p = .009 for males and p < .001 for females at 

the county level; p = .035 for males and p . 010 for 

females at the PUS level). The squared multiple correlation 

coefficient increases from R2 "'.312 to R2 = .317 (males) 

and from R2 = .105 to R2 = .114 (females) when the three air 

quality variables are added to the regression equation based 

on the 22 "control" variables for county data. Similarly, 

increases for the PUS analyses are from R2 = .705 to 

R2 = . 712 (males) and from R2 = .406 to R2 = .432 (females). 

Although air quality has a statistically significant influ-

ence, its magnitude is small. To gauge the "size" of this 

effect, it is helpful to assess the influence of two other 

sets of variables. For example, income 

(% ( $3,000 and % ) $15,000) when added to the regression 

equat.i.on 1ncreases R2 from . 304 to . 317 (males; PUS level 

data). When the five weather-related variables are added to 

. 2 the analys 1s, the R values show an increase from . 692 to 

.712 for males in county level data, and from .300 to .317 

for males in PUS level data. The influences associated with 

the three air quality measurements show smaller but similar 
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changes in R2 values. 

It is important to note that statistical significance is 

achieved by variables that add only small amounts to the R
2 

value. For the county level data, a variable that changes 

R2 by more than .002 will be declared statistically signi

ficant at the 5% level; for the PUS data, a change of .003 

will be declared statistically significant at the 5% level. 

The direct comparison of the estimated regression coef-

ficients (Tables l4A-l4C) presents no special problems since 

all air quality measurements are in the same units (micro

grams per cubic meter). The comparison of the three regres-

s ion coefficients relating air pollution to male mortality 

rates (columns l and 2 of 'Tables l4A-14C) reveals a con-

sistent but somewhat confused picture. The regression coef-

f icients associated with the S02 measurements show strong 

and statistically significant associ at ions for both county 

and PUS analyses. However, three of four coefficients for 

TSP and N02 are negative (one of these is statistically sig-

nificant, wH.h p < .02) which implies that lower mortality 

rates are accompanied by higher levels of TSP and N02. 

The same analysis for the female mortality rates 

(columns 3 and 4 of Tables 14A-14C) yields similar associa-

tions between the pollutant measurements and mortality, 

although the regression coefficients are reduced (in abso-

lute value) in all six cases. Again, the S02 coefficients 

are positive, and three out of the four TSP and N02 coeffi-

cients are negative. 
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The same analyses were repeated employing a "dummy~ 

variable to account (in a limited sense) for regional varia-

tion. For example, TSP in the western counties typically 

contains a high level of dust not found elsewhere. This type 

of regional variation is indeed expected and is incorporated 

in the regression equation by adding another independent 

variable (a somewhat simplistic solution to the issue but 

one which provides a direct comparison with other work (1]). 

This approach (rows 3 and 4 of Tables 14A-14C) yields a 

reduction in the magnitude of the regression coefficients 

for most categories, but leaves the associations observed in 

the unadjusted national analyses essentially unchanged for 

all 12 coefficjents. That is, S02 has a strong and posi-

tive association, and both TSP and N02 predominately nega-

tive associatiom;, for county and PUS analyses for both 

sexes. 

When the national data are stratified into four regional 

analyses (the regions previously defined) at a loss of some 

statistical power, no consistent pattern between air quality 

and mortality emerges. The S02 measurements show mostly 

pos1t1ve associations with mortality rates with two excep-

t..iOnfc) (b. 
I 

-4.24 for county data -- west and b. 
I 

-14.36 

for PUS data-- east). The coefficients associated with TSP 

and N02 are not cons is tent between county and PUS analyses 

nor consistent between male and female analyses. Further-

more, as is the case with combined national data, many of 

the coefficients are negative and several of these are sta-

tistically significant. 
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One possible source of the inconsistencies among the 

regression coefficients computed for county and PUS data 

sets is related to the "ecologic fallacy" first discussed by 

Robinson [15]. Robinson demonstrated that the correlation 

coefficient calculated from a series of observations cannot 

be estimated by the correlation coefficient calculated from 

summary values that are aggregates or averages (ecologic 

variables) except under special circumstances. The problems 

of analyzing aggregated data as a unit of observation have 

been widely discussed, particularly in the social sciences 

(e.g. [16]). A similar "ecologic fallacy" applies to the 

calculation of regress ion coefficients. A summary regres-

s ion coefficient representing the weighted average of the 

regression coefficients calculated from data within a series 

of groups is not, in general, equal to the regression coef-

ficients derived from aggregated group values. 

cally, for the case of simple linear regression 

b (w) = 
y/x 

R 
XX b (b) 

Rxy y/x 

Specifi-

where b(w) 
y/x 

gle record 

is the regression coefficient derived from sin

data, b:~x) is the regression coefficient derived 

from aggregated data, and 

R 
XX 

The expressions represented by R and R are analysis of 
XX XY 

variance quantities -- namely, the ratios of the "between" 

to total sums of squares. The "within" regression 
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coefficient b~:X) is equal to the "between" regression coef

ficient b~~} only when Rxx = Rxy, which is rarely encoun

tered in applied situations. 

To illustrate this type of bias the county is considered 

as a single data element (which it is not) and the PUS area 

as the aggregated unit of analysis. In this case, the 

regression based on county level data produces an estimate 

of the relationship between a variable x and mortality, 

(w) 
namely the coefficients by/x, given in column 1 of Table 

15. (Each row of Table 15 corresponds to a different vari

able x.) From the PUS data, the relationship between the 

same variable x and mortality can be represented by a set of 

aggregate coefficients b(/.b), given in column 2 of Table 15. y X 

The ratios, given in column 3 of Table 15, show the 

11 ecologic" bias encountered from the aggregated values when 

a simple linear regression analysis is performed using PUS 

rather than county data. Absolute values of the observed 

ratios vary from >.1 to over 120. It should be reemphasized 

that county level data are not free from "ecologic" bias 

since the county values are themselves an aggregation of 

smaller units usually individuals. The magnitude of the 

county level bias cannot be estimated without the unit 

record data. The situation is more complex for the mul-

tivariable regression case, and similar biases exist. 
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ANALYSIS OF ACCIDENT AND STOMACH CANCER DATA 

Two causes of death were analyzed using linear regres

sion models, the 22 ecologic variables in appendix A, and 

the three air quality measurements previously employed, 

along with dependent variables stomach cancer and ace ident 

mortality rates for males and females aged 45-54. A demon

strated association exists between stomach cancer and air 

pollution [17]; accident mortality is not causally related 

to air quality. The county and PUS level data analyses 

should, therefore, yield the known associations or lack 

thereof, serving to reflect on the validity and sensitivity 

of the ecologic regression approach. 

The county level analysis of stomach cancer mortality 

shows many of the expected associations between the 22 "con-

trol" variables and mortality in males. Income 

(% ,s;; $3,000 and%) $15,000), nationality (% foreign), age 

(% ~ 5 years and % ) 65 years), and occupation (% profes

sional) are significant (p ( .02) contributors to the 

regression equation for stomach cancer. The identical 

analysis for stomach cancer rates among females yields less 

strong but similar associations between the 22 independent 

variables and mortality. Furthermore, as mentioned, highly 

specific dependent variables generally deer ease the eff ec

tiveness of linear models based on ecologic data to summar

jze mortality rates. In the case of age-specific (45-54) 

stomach cancer, R
2 

- .027 (males) and R
2 

= .009 (females). 
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The PUS level analyses only generally reproduced the 

expect.ed associations between the "control" variables and 

stomach cancer mortality. 

coefficients are = 

The squared multiple correlation 

. 096 (males) and R
2 . 068 

(females). 

The county level analysis of accident mortality rates 

yields the generally expected association between the 22 

"control" variables and mortality. Income, age, occupation 

and, additionally, temperature (average July and average 

January) are significant ( p < .02) variables with regard to 

explaining the nationwide variation in accident mortality 

2 2 rates (R = .172 for males and R = .039 for females). 

The PUS data reflect a somewhat different picture. Land 

area, urbanization (% urban), divorce rate, income (% 

~ $3, 000 and % ~ $15, 000) and occupation (% manufacturing) 

are significant (p < .02) independent variables in the 

regression analysis for males. As before, these same asso-

ciations are generally present but at a reduced level in the 

female analysis. 

The fact that the "control" variables behave in a more 

or less expected manner in the ecologic regression analyses 

1s reassuring. The role of air quality measurements in the 

explanation of stomach cancer and accident mortality is not 

as easily discerned. The coefficients given in Table 16 do 

not show any expected patterns. The coefficients from the 

stomach cancer regression analyses should be strong and 

positive for TSP measurements, since TSP has been found by 
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other investigators to be associated with increases 1n 

stomach cancer rates [17]. Of the four coefficients relatinq 

TSP to stomach cancer mortality, three are not statistically 

significant (two of these are negative) and one is positive 

and significant (p = .025). The other coefficients associ

ated with S02 and N02 are not statistically significant and 

mostly negative (6 out of 8). The magnitudes of most of the 

rearession coefficients relating air quality to accident 

mortality rates are no more than would be expected by chance 

variation (10 out of 12). However, two regression coeffi

Clents from the county analyses are statistically signifi-

cant (p .002. for N02 ·- males and p = .035 for TSP 

females) but negative. 
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DISCUSSION 

Like ionizing radiation, high levels of air pollution 

are unquestionably toxic. The existence of effects at low 

doses is much more equivocal. Parallel to the debate sur

rounding ionizing radiation, it is argued that most air pol

lution levels are low and mechanisms exist which protect 

against any damaging effects. On the other hand, it is pos

sible that no threshold level exists and any elevation of 

air pollution increases the risk of disease. Since large 

numbers of individuals are exposed daily to air pollution, 

evaluation of relevant data, methodologies and inferences 

bearing on the existence or non-existence of a dose-response 

relationship between low levels of air pollution and disease 

risk is critical. 

Thir3 report is focused entirely on the evaluation of 

regression analyses of ecologic data to study the effects of 

ambient air pollution on mortality rates. The following 

discussion is divided into sections concerning the statisti

cal issues underlying the use of linear models applied to 

aggregated data, the adequacy of ecologic data, and the 

jnterrretation of results (inferences) made from ecologic 

regression analyses. 

sJons are indeed 

Data, analytic techniques, and conclti

inter-dependent but are presented 

separately for clarity. 

STATISTICAL ISSUES 

Regression analysis is rigorously derived from a set of 

mathematical assumptions. The application of regression 
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techniques is necessarily less precise. The assumption of a 

normally dist.r ibuted variable with equal variance linearly 

related to a series of independent variables is never com-

oletelv realized in anv analysis. Some violations of these 
~. ' .. . 

basic assumptions were detected in both the county and PUS 

data (e.g., mortality rates do not appear to be normally 

distributed). The ana1ysis of the residual values shows 

moderate deviations from the expected values but no large, 

clear-cut trends. The fact that relatively large quantities 

of data are available for each analysis ()3,000 counties and 

>400 PUS areas) makes the analyses rather robust with 

ref;pect to v1olaLlons of c~ome of the statistical assump

tlorJs. The questions o.f normally distributed data, equal 

variance. multico.llinearHy c1f coefficients, and adequacy of 

.1 i ne<H model~:~ could be invest HTat.ed further but the present 

anaJYfH'!S .indicate these purely statistical issues are not 

lJkelv to be of fundamental importance. 

Jiowever, interpretation of the regression coefficients 

JS bas1c to the regression approach. In a classical regres

";Jon analvsis the reqreseion coefficients estimate the 

PXoected response in a dependent variable for a unit change 

tn an Independent variable, while the other variables in the 

r eore~:;::;.Ion equat .ion are held constant. The independent and 

dennndent' var Utbles J.n a.n ecologic regression are summary 

va1w~::-; of aqgreqates of individuals. In this case problems 

ari:·;e 111 the interpretation of the regression coefficients 

when Interest 1s on the individuals that make up the 

Mli:iJvzed aqqregate [ 18] . That 1 s. no straightforward 
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interpretation exists of the ecologically derived regress1on 

coefficients with respect to the individuals (e.g., b;;:> is 

not equal to b(b) ). The interpretation of ecologic regres-
y/x 

sion analyses, in particular regression coefficients or 

correlation coefficients, as if they were derived from the 

classic regression assumptions, is often referred to as the 

"ecologic fallacy." We have illustrated biases due to the 

"ecologic fallacy" by comparing simple linear regression 

coefficients derived from county data with those derived 

from PUS level data. Although both regression analyses were 

estimating the same relationships, many coefficients dif-

fered rather strikingly. These comparisons do not help 

assess the biases incurred in the multiple regression situa-

tion but do show the potential for a disrupting and uncon-

trolled influence on inferences made from ecologically 

derived regression coefficients. Without a clear interpre-

tation of the response of the dependent variable due to the 

isolated influences of specific independent variables (e.g., 

TSP, S02 or N02), the primary task of assessing the specific 

contributions to the variation in mortality rates from 

specific variables fails. 

A technical point should be made with respect to the 

"multiple comparison" problem. The analyses presented in 

this report, as well as the similar work by others, involves 

larqe numbers of statistical tests, each with associated 

probabilities. These tests should be considered as explora-

tory tools and the stated significance levels as relative 

measures rather than accurate estimates of likelihood. When 
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a large series of ad-hoc, non-independent statistical tests 

is performed, the overall error rate increases and cannot be 

estimated without recourse to special multiple comparison 

procedures. 

A statistical measure is declared significant if its 

value is unlikely to have occurred by chance variation. 

Analyses often yield statistically significant differences 

that have no consequential biologic influences, particularly 

when large amounts of data are involved. The county and PUS 

analyses of the influence of air pollution may fall into 

this category. Adding the three pollutants (TSP, S02 and 

N02) to the regression equations produced a statistically 

significant increase in R2 values. The evaluation of these 

increases from a biologic perspective is more difficult. It 

is entirely possible that increases like those observed 

(e.g., 0.005 for county and 0.007 for PUS-- males) may be 

unimportant when assessed by other criteria. The question 

of "statistical" versus "biologic" significance is not 

unique to the study of air quality and disease, and should 

be kept in mind when evaluating the present results or those 

of other ecologic regression analyses. 

DATA ISSUES 

Mortality data are not. ideal for statistical analysis 

since they are subject to a variety of biases [19] and prob-

lerns [9]. A study of disease employing mortality data 

necessitates a choice of some measure of risk (usually 

rates). The use of total mortality rates minimizes the 
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problems of statistical instability due to small numbers of 

observations and avoids biases due to disease classifica-

tion. This choice also maximizes the squared multiple 

correlation coefficient calculated in a regression analysis. 

General mortality patterns are more predictable from 

ecologic variables with linear models than are age- or 

cause-specific rates (e.g., among males aged 45-54, R2 for 

total mortality is 0.859, while R2 for stomach cancer is 

0.096). This increase in predictability is paid for by a 

decrease in biologic specificity. If an association is 

established for total mortality, the question immediately 

ar .ises as to which of the many widely varying causes of 

death are in fact involved. The possibiLity also exists 

that employing an overall measure of mortality obscures 

important interactions among the specific causes of death. 

The age- and sex-specific rates produce a more epidemiologi-

cally focused analysis but are not accurately summarized by 

a l inea.r model ( R2 low). Total mortality leads to a high 

degree of predictability (R
2 high) but may yield more or 

les0 useless results since it is rare that a summary of a 

series of heterogeneous units is meaningful. 

The 22 control variables present no technical problems. 

Furthermore. sampling errors and biases in the PUS data are 

non-exjstent or exist at extremely low levels. However, it 

should be emphasized that the important control variables 

mav be missing. Measures of cigarette smoking and occupa-

t .ional exposures are not ecoJ.ogic variables and are not 

tractable in the usual approach. The need to measure 
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smoking in studies of air pollution has been pointed out by 

many investigators (most recently [9]). The lack of smoking 

and occupational data in the ecologic approach is perhaps a 

fatal flaw. 

The air quality data present concerns in several direc

tions -- coverage, exposure, and timing. Only 57 percent of 

the US counties have adequate estimates of TSP, S02 and N02 

(based on the 60 kilometer criterion in the interpolation 

algorithm). The estimates vary in accuracy (monitoring den

sity) but measure at I east to some degree the air quality 

surrounding most of the nation's population. A1though the 

coverage may be adequate, the degree of exposure of county 

residents is not directly measured for at least two reasons. 

Air quality monitoring stations are often placed to record 

specific sources of pollution and the data may or may not be 

representative of the area. For example, a station might be 

placed near a coal burning utility company, so that air 

quality measurements from this station would not genera1ly 

reflect the actual levels experienced by the county 

res1dents. Secondly, neither mortality statistics nor con

trol variables incorporate into the analyses the important 

aspects of population stability. The fact that a person 

resides in a specific county does not necessarily imply that 

personal exposure levels are reflected by air pollution 

eRt imates for that county. An undetermined number of per

sons will be new residents, or work elsewhere, or for a host 

of reasons, spend little time in the county of residence 

that appears on the death certificates. To the degree that 
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this number is large, the county estimates will not accu

rately reflect exposure. 

Whether the air quality measurements recorded in the 

EPA-SAROAD data base represent human exposure is one ques

tion. Another important question is when the air quality 

was measured. The present data involve mortality during 

1968-1972 and air quality recorded during 1974-1976. Other 

studies are also forced to use rather recent air quality 

measurements since accurate nationwide data are available 

only for the last decade. For example, the work of Mendel

sohn and Orcutt (l] used 1970 mortality and 1970 PUS data 

along with 1974 air quality measurements. Implicit in 

analyzing mortality data from a time prior to the air qual

ity data is the assumption that relative air quality differ

ences among geographic units are stable over time. This 

important and usually ignored assumption implies that 

overall pollution levels could change, but relative differ

ences must remain stable to be useful in an analysis of 

antecedent mortality rates. In fact, it is not obvious when 

the air quality measurements should ideally be made. If 

pollution affects mortality largely by increasing cancer 

rates, then air quality measurements should be made 10-20 

vears prior to the mortality data since this time interval 

is thouqht to be the latency period for most cancers. Other 

causes of death have other latency periods and present a 

compl1cated picture for determining when air quality should 

be measured. 
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Another potentially severe problem with geographically 

based variables used in ecologic regression analysis is that 

these variables in many cases are averages of rather large 

and diverse units -- counties, PUS areas or Standard Metro

politan Statistical Areas (SMSA) [2]. Whether the ecologic 

variables are mortality rates, census summaries, or interpo

lated air quality measurements, they are averages of large 

numbers of observations. Analysis of this type of data does 

not address the basic concern that these averages may not be 

representative of any specific quantity. That is, they 

represent such a diverse set of measurements that they are 

relatively meaningless for understanding the nature of the 

relationships under investigation. For example, Los Angeles 

county has a population of over 7 million. Summaries such 

as median family income, percent black population, and per

cent owner-occupied homes may have little meaning since 

these values ignore the many extremely different subpopula

tions (some of the nation's richest and poorest populations 

live in Los Angeles county). Los Angeles county is an 

extreme case, but to a lesser extent the averaging of 

heterogeneous observations into a single set of numbers 

occurs in all county-, PUS-, or SMSA- based data. 

INFERENCES 

The ecologic regress ion analyses of both county level 

and PUS level data set~ produce no strong or consistent evi

dence that a link exists between ambient air pollution and 

mortality. A few associations (positive regression coeffi-
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cientE;) do occur. The association between mortality rates 

and S02 levels is strong and positive for most analyses with 

a few exceptions. 

plicated. Taken 

The interpretation of this result is com

at face value, a positive coefficient 

reflects a direct influence in terms of a linear model, but 

the relationship between independent variables and dependent 

variables is undoubtedly more complex. Consider, for exam

ple, the observation that the coefficient associated with 

divorce rate is positive and in many cases significantly 

associated with total mortality. It is somewhat simplistic 

to conclude that the divorce rate directly influences mor

tality. 1'hat is, reducing the divorce rate alone is not 

likely to reduce mortality. Although a regression equation 

is easJ ly used to estimate the change in the number of 

deaths that would result from a specific percentage decrease 

in divorce (elasticity), this number would not be very plau

Slble, nor would any corresponding estimates made from these 

ecologic regression equations. Similarly it is indeed pos

sible that the positive association between S02 and mortal

ity doE~c.o; not result from a direct causal relationship but 

rather from a complicated social/biological mechanism. Con

siderina that TSP and N02 levels have mostly negative coef

ficJents for a maJority of analyses. the most likely expla

natJon of any observed relationship between air quality and 

mortality is that the coefficients are artificially produced 

by 1: h~:• analytic approach ("ecologic fallacy") . Protective 

effects (negative coefficients) from TSP and N02 pollutants 

are bJoJoaically implausible and result either from indirect 
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associations with unmeasured variables (incomplete model 

bias) or are strictly the result of the fallacy of drawing 

inferences from ecologically derived regression coeffi

clents. The difficulty of interpreting both county and PUS 

analyses is further demonstrated by the analysis of stomach 

cancer and accident mortality rates. The known association 

between stomach cancer [ 17] and TSP is not duplicated. In 

fact several (two out of four) of these regression coeffi

cients are negative. Although most of the coefficients 

associated with accident mortality are not statistically 

significant (as expected), two are strongly negative (p < 

. 035) again weakening the strength of any inferences made 

from this county/PUS approach to study air quality and mor

tality. 

54 



ACKNOWLEDGMENTS 

The work described here is part of the ongoing PAREP 

(Populations at Risk to Environmental Pollution) project, a 

collaboration between the LBL Computer Science and Applied 

Mathematics (CSAM) Department and the University of Califor

nia (at Berkeley) School of Public Health (SPH). Past and 

present funding was obtained from the Environmental Protec

tion Agency (Bill Nelson), the Department of Energy (Walter 

Weyzen and John Vir en), and the Electric Power Research 

Institute (Ron Wyzga). 

Since the inception of the PAREP project in 1976, Warren 

Winkelst.ein (SPH) and Carl Quong (CSAM) have provided impor

tant guidance and support. Previous PAREP project managers 

were Craig Hollowell (LBL Energy and Environment Division) 

and Donald M. Austin (CSAM). 

This project depends upon Seedis, the Socio-Economic 

Environmental Demographic Information System being developed 

by CSAM under an interagency agreement between the Depart

ment of Energy and the Department of Labor, Employment and 

Training Administration. Two Seedis modules - Chart, writ

ten by B i 11 Benson 1 and Carte 1 written by Peter Wood and 

Albert Yen - provided the tables and figures of this report. 

Numerous people - primarily Barbara Levine, Simcha Knif, 

Fred Gey, Bob Healey, Edna Williams and Bill Hogan - helped 

prepare the data presented here. 

The 1968-1972 mortality data, originally from the 

National Center for Health Statistics, were tabulated by 

55 



Herbert Sauer of the University of Missouri, and provided to 

LBL by Larry Milask, formerly with the UPGRADE project of 

the Council for Environmental Quality. The 1974-1976 air 

qua1ity data were extracted from the SAROAD (Storage and 

Ret:r ieval of Aerornetr ic Data) data bank and provided to LBL 

by Carol Evans of the Environmental Protection Agency. 

Other related air quality data files were provided by Carmen 

Benkovitz of Brookhaven National Laboratory. 

56 



REFERENCES 

1. R. Mendelsohn and G. Orcutt, An empirical analysis of 
air pollution dose-response curves, J. Envir. Econ. and 
Mang. 6, 85-106 (1979). 

2. L. Lave and E. Seskin, "Air Pollution and Human Health," 
The Johns Hopkins University Press, Baltimore (1977). 

3. P. F. Ricci and R. E. Wyzga, A statistical review of 
cross-sectional studies of ambient air pollution and 
mortality, presented at DOE Statistical symposium, 
Berkeley, CA (1980). 

4. N. R. Draper and H. Smith, "Applied Regression 
analysis," Wiley & Sons, New York (1966). 

5. U.S. Bureau of the Census, County and City Data Book, 
1977 (A Stat.i st i cal Abstract Supplement), U.s. Govern
ment Printing Office, Washington, D.C. 20402, 1978. 

6. The Area Resource File, U.S. Department of Health, Edu
cation, and Welfare, Public Health Service, Health 
Resources Administration, Bureau of Health Manpower, 
Manpower Analysis Branch, DHEW Publication No. (HRA) 
80-4, October 1979. 

7. Public Use Sample Users Guide, U.S. government publica
tion, U.S. Census Bureau (1975). 

8. A. M. Lilienfeld, "Foundations of Epidemiology," Oxford 
University Press (1976). 

9. W. W. Holland, A. E. Bennett, R. Cameron, et al., Health 
effects of particular pollution: reappraising the evi
dence, Am. J. Epid. 110; 527-659 (1979). 

10. M. L. Levin, W. Haenszel, B. E. Carroll, et al., Cancer 
incidence in urban and rural areas of New York State, J. 
Nat. Can. Inst., 24: 1243-67 (1960). 

11. W. Haenszel, D. B. Loveland, and M. G. Sirken, Lung 
cancer mortality as related to residence and smoking 
habits, J. Nat. Can. Inst., 28: 947-961 (1962). 

12. C. L. Chiang, "Introduction to Stochast.ic Processes in 
Biostatistics," ,John Wiley & Sons, (1968). 

13. S. Selvin, S. T. Sacks, D. W. Merrill and W. Winkel
stein, The relationship between cancer incidence and two 
pollutants (total suspended particulate and carbon 
monoxide) for the San Francisco Bay Area, report LBL-
10847 (June 1980). 

14. C. C. Li, "Population Genetics," The University of Chi
cago Press (1968). 

15. W. s. Robinson, Ecologic correlation and the behavior of 
individuals, Amer. Soc. Rev. 15: 351-357 (1950). 

lf,. E. W. Borgut.ta and D. J. Jackson (editor), "Aggregated 
Data," Sage Publications, Beverly Hills, CA (1980). 

17. W. Winkelstein and S. Kantor, Stomach cancer: positive 
association with suspended particulate air pollution, 

57 



Arch. Environ. Health, 18: 544-547 (1969). 

18. L. I. Langbein and A. J. Lichtman, "Ecological Infer
ence," Sage Publication, Beverly Hills, CA (1978). 

19. s. Selvin, s. T. Sacks, and D. W. Merrill, Patterns of 
United States mortality for 10 selected causes of death, 
report LBL-10627, 1981, to be published. 

20. J. L. McCarthy, D. W. Merrill, A. Marcus, W. H. Benson, 
F. C. Gey, and c. Quong, The Seedis Project: A Summary 
Overview, Lawrence Berkeley Laboratory Report LBID-379, 
April 1981 (revised version in preparation). 

21. D. MerrilL 1974-1976 Air Quality: County versus PUS 
Area, Seedis file Z (CYAQSUM2), internal Seedis documen
tatjon, Lawrence Berkeley Laboratory, 1981. 

58 



Table 1. SummarY statistics of total mortality rates (1968-
1§72) for county and PUS level d~ta. 

Table 2. U.S. age distribution of males and females (1970). 

Table 3. 

The standard deviation indicates the variation 
over the 3082 counties. 

Correlations among the percentage 
residents of the 3082 U.S. 
specific age categories (1970). 

of male county 
counties for 

Table 4. Summary statistics for expectation of life (at 
birth) for county level data for white males 
and females. 

Table SA. The ten U.S. counties with the lowest expectation 
of life Cat birth) for white males (1968-1972 
data) . 

Table 5B. The ten U.S. counties with the lowest expectation 
of life (at birth) for white females (1968-
1972 data). 

Table 6. Correlation between expectation of life and county 
population density. by percentage of residents 
with median f aml i y income less than $3, 000, 
for white males and females. 

Table 7. County level air quality (1974-1976) by county 
population size. Data shown include number of 
counties. pollutant concentrations (maximum, 
mean. and minimum, in micrograms per cuc1c 
meter), and monitoring density (effective full 
time stations per 1000 square kilometers). 
Pollutant concent.r at ions and monitoring den
sity are evaluated at the position of the 
county population centroid. 

Ta.ble 8. PUS level air quality ( 1974-1976). Data shown 
include pollutant concentrations (maximum, 
mean. and minimum. in micrograms per cubic 
meter), and monitoring density (effective full 
time stations per 1000 square kilometers). 
Pollutant concentrations and monitoring den
sity are population-weighted averages of 
county values. 

Table 9. Means and standard deviations for 18 independent 
variables at thE~ PUS level. derived from (a) 
t h e 19 7 0 Census Pub 1 i c Us e Sam p 1 e ( PUS ) f i 1 e 
and (b) aggreggated county level data from the 
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Fourt-h Count summary tabulation. 

Table 10. Absolute differences, percent differences, and 
slopes summarizing the comparison between data 
derived from (a) the 1970 Census Public Use 
Sample (PUS) file and (b) aggregated county 
level data from the Fourth Count summary tabu
lation. 

Table 11. Means and standard deviations of mortality rates 
(1968-1972), and value of ~he squared multiple 
correlation coefficient R .. , for sever.fl age 
and sex categories. The values of R were 
obtained from regression analyses in which the 
22 »control" variables and three pollution 
variables were the independent variables. 

Table 12A. Males, U.S. total: path coefficients and R2 from 
analysis of total mortality, ages 45-54, with 
22 "control" variables. 

Table 12B. Males. West: path coefficients and R
2 from 

analysis of total mortality, ages 45-54. with 
22 "control" variables. 

Table 12C. Males. Midwest: path coefficients and R
2 from 

analysis of total mortality, ages 45-54, with 
22 "control" variables. 

Table 12D. Males, South: path coefficients and R
2 from 

analysis of total mortality, ages 45-54, with 
22 "control" variables. 

2 Table 12E. Males. Northeast: path coefficients and R from 
analysis of total mortality, ages 45-54, with 
22 "control" variables. 

Table l3A. Females, U.S. total: path coefficients and R2 

from analysis of total mortality. ages 45-54, 
with 22 "control" variables. 

Table 13B. Females, West: path coefficients and R2 from 
analysis of total mortality, ages 45-54, with 
22 "control" variables. 

2 Table 13C. Females, Midwest: path coefficients and R from 
analysis of total mortality, ages 45-54, with 
22 "control" variables. 

Table 13D. Females, South: path coefficients and R2 from 
analysis of total mortality, ages 45-54. with 
22 "control" variables. 
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Table 13E. Females, Northeast: path coefficients and R£ 
from analysis of total mortality, ages 45-54, 
with 22 "control" variables. 

Table l4A. Regression coefficients from four regression ana
lyses associated with TSP measurements for 
males and females (county and PUS data). 

Table 14B. Regression coefficients from four regression ana
lyses associated with S02 measurements for 
males and females (county and PUS data). 

Table l4C. Regression coefficients from four regression ana
lyses associated with N02 measurements for 
males and females (county and PUS data). 

Table 15. Measures of bias incurred when county level data 
are aggregated into PUS areas. 

Table l6A. Regression coefficients of pollution measurements 
for stomach cancer and accident mortality, for 
males and females aged 45-54 (counties). 

Table 16B. Regression coefficients of pollution measurements 
for stomach cancer and accident mortality, for 
males and females aged 45-54 (PUS areas). 
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Table 1. 
Total Mortality Rates: 
Summary Statistics 

males females 
county PUS county PUS 

mortality rate 935.20 895.80 435.60 447.40 
per 100.?000 

standard 252 .. 00 146.10 123 .. 40 56.00 
deviation 

Cl\ skewness 1.21 .73 .37 .71 
N 

skewness .. 01 .. 23 .01 .. 23 
99.5% critical value 

kurtosis 5.82 .80 2.95 2.29 

kurtosis .23 .50 .23 .50 
99.5% critical value 

maximum 12963.00 6306.00 5555.00 3225.00 



Table 2. 
U.S. Age Distribution in Whites~ 1970 

-
percent std dev (a) 
males females mates females 

age 

0 ~ • 02 u .02 1 • 00 1 .00 

1-4 0 .07 D .0s ~ .02 ~ .01 

5-14 D .20 D .19 0 .04. 0 .04 

15-24 D .18 D .17 0 .05 0 .04 
0'\ 25-34 D .12 D .12 0 .03 0 .03 w 

35-44 D .12 D .11 u .02 ~ .02 

45-54 D .12 D .12 ~ .02 0 .02 

55-64 D .09 D .10 D .03 0 .03 

65-74 0 .0s D .07 0 .03 0 .03 

75-84 0 .03 0 .04 ~ + 01 ~ .02 

85+ 1 • 01 ~ • 01 1 • 00 1 . 01 

(a) standard deviation indicates 
variation over 3082 U.S. counties 



Table 3. 
e Co relati s ( ) 

tJhite Ma es .. 970 

age 
5-1 15 25-34 35 55-64 4 75-84 85+ 

0 1.00 0 0 0 0 0 . $ ~ 

1-4 .82 L0id 0 0 0 0 ., "' 

5-1 .?0 .85 1 00 0 0 0 0 0 

15-24 1 32 .22 .00 0 0 ~ i\11 ~ . 
25-34 .70 .72 .57 48 1. 0 0 . 9 

C5'l 
J::> 

35-44 .59 .69 .75 .25 .78 1.00 0 
45-54 .31 . 1 .57 .06 .44 .73 1.00 0 
55-64 -.01 .09 .29 -.12 .03 .34 . 4 1.00 

65-?4 -.16 -.10 .10 -.17 -.18 .08 .48 .84 .00 

75-84 -.18 -.13 .08 -.1? -.25 .00 .43 .75 . 1.00 

85+ -.17 -.11 -.08 -.14 -.23 -.02 .35 .63 74 .85 1.00 

:t Diameter of circle is proportional to correlation. 
Shaded circles indicate negative correlations. 



number of counties 

0"\ 
expectation of tife 

U1 

mean 

std dev 

standard error 

minimum 

maximum 

Table 4. 
Expectation of Life at Birth! 
Summary Statistics 

male female 

3081.00 3081.00 

66.78 74.25 

2.07 1.51 

.04 .03 

54.50 65 .. 53 

78.98 85.,00 



Table SA. 
U.S. Counties with Lowest Expectation of Life 

i Mates$ 1968-1972 

population expectation of life (years) 

MA Nantucket 3774 .. 50 

NB Loup 854 54.76 

CO Hinsdale 202 57.18 

WI Menominee 2607 57.71 
0'1 
0'1 

GA Long 3746 58.81 

CO Mineral 786 .87 

MT Treasure 1069 59.24 

VA Nelson 11702 59.29 

GA Atkinson 5879 59.61 

CO Jackson 1811 59.74 



Table SB. 
U.S. Counties with Lowest Expectation of Life 
White Females, 1968-1972 

population expectation of life (years) 

MI Lake 5661 65.53 

NV Storey 695 65.71 

MA Nantucket 3774 65.89 

MT Me Cone 2875 66.96 
0'1 
-...] 

GA Schley 3097 67.64 

VA Charles City 6158 67.76 

NV Lincoln 2557 67.93 

WI Menominee 2607 67.93 

VA Nelson 11702 68.04 

MI Oscoda 4726 68.82 



0"'\ 
00 

% ( 13, 000 (a ) 

0 - 10~~ 

10% - 15% 

15% - 20% 

20% - 30% 

30% - 100% 

total 

Table 6. 
Correlation Between Expectation 
of Life and Population Density 

counties correlation coefficients 
females males 

D 728 

D 818 

D 590 

0 657 

~ 261 - • 2UIIIli!Hiliiliiltl!illlU " 

0 3081 -.06111 II .01 

(a) percent of families with 1969 income under 13 9 000 



Table 7. 
County Level Air Quality# 1974-1976 

County Population: 
<10.t000 10-500,000 )500.t000 total 

counties 
total 842 82144 ~ 73 §3059 
T5P 634 2049 73 2756 
502 397 I 11736 ~ 73 06 
N02 314 c=]1467 ~ 73 I _ 11854 

max cone 
p I 1127 + 9 I 1115.1 I !1 .2 I 11 .2 

502 D 55.1 D 51.7 D 67.6 ~ 67.6 
N02 169 .. 8 D 75.4 -~201.8= 1201.8 

mean cone 
T5P 52 .. 9 D 55.5 0 61.9 D 55 .. 1 

0'1 502 7.5 0 10.1 0 17 .. 8 u 9.8 1.0 

N02 20.1 0 27.1 D 48 .. 3 0 26,7 
min cone 

T5P 0 21.5 ~ 7 .. 6 ~ 8.0 ~ 7 .. 6 
502 I 2.4 I 2.0 I 2.0 I 2 .. 0 
N02 0 17.3 I 2 .. 8 I 1.1 I L. 1 

mon density 
D T5P I .03 0 .16 .15 

502 i .04 0 .. 18 0 .18 
N02 I .02 D .. 08 n • 

max/mean/min cone = micrograms cu meter 
mon density = full-time stations per 1000 



-.J 
0 

max cone I 

mean cone 

min cone 

mon density 

Table 8 .. 
PUS Level Air Quality~ 1974-1976 

Pollutant: 
TSP 502 1'102 

n 
!124.4 u 58.7 I 1185.6 

58.0 13 .. 0 34 .. 7 

14 .. 9 2 .. 0 3.8 

.. 53 .71 .36 

max/mean/min cone = micrograms per cu meter 
mon density= full-time stations per 1000 sq km 



-.....] 

1-' 

1970 population 
% black 
% foreign 
number of families 
% <= 1 year old 
% <= 65 years old 
% <= S3.t000 
~; >= S15.t000 
population )= 25 yrs 
%attended college 
perions in labor force 
persons employed 
% employed.t manufacturing 
% employed.t professional 
occupied housing units 
% incomplete plumbing 
% ) 1 person per room 
% owner occupied 

Table 9. 
PUS File vs Fourth Count Tabulation: 
Means and Standard Deviations 

PUS file 
mean std dev 

496620.1 
9 .. 8 

12 .. 9 
125114.3 

8 .. 5 
10 .. 1 
11 .. 4 
17 .. 9 

268710 .. 3 
10 .. 0 

195572 .. 3 
187028 .. 0 

25 .. 4 
22 .. 2 

154988 .. 3 
7 .. 2 
8 .. 3 

66 .. 8 

517202 .. 5 
11 .. 7 
10 .. 5 

130210 .. 6 
.. 9 

2 .. 9 
6 .. 0 
8 .. 6 

291686 .. 2 
4 .. 0 

221281 .. 5 
210393 .. 4 

10 .. 7 
4 .. 7 

173483 .. 0 
7 .. 2 
3 .. 6 
9 .. 3 

4th Count 
mean std dev 

496269 .. 6 
9 .. 7 

13 .. 1 
124656 .. 3 

8 .. 5 
10 .. 1 
HL7 
18 .. 5 

267241 .. 7 
9 .. 9 

195925 .. 4 
187240 .. 7 

25 .. 0 
22 .. 0 

155096 .. 2 
7 .. 2 
8 .. 4 

66 .. 3 

515316 .. 0 
11 .. 6 
10 .. 6 

129885 .. 8 
1 .. 0 
3 .. 0 

5 .. 8 
8 .. 4 

289994 .. 2 
4 .. 1 

220806 .. 6 
209916 .. 3 

HL6 
4 .. 7 

173606 .. 0 
7 .. 1 
3 .. 6 
9 .. 8 



-J 
N 

1970 population 
% black 
% foreign 
number of families 
% <= 1 year old 
% <= 65 years old 
% (= $3~000 

% >= $15_.000 
population >= 25 yrs 
%attended college 
persons in labor force 
persons employed 
% employed~ manufacturing 
% employed~ professional 
occupied housing units 
% incomplete plumbing 
% > 1 person per room 
% owner occupied 

Table HL 
PUS File vs Fourth Count Tabulation: 
Differences and Slopes 

absolute 
difference 

-319 .. 11 
- .. 06 

.32 
-454.30 

.04 

.04 
-.81 

.77 
-1137.04 

-.07 
636 .. 01 
537.94 

-.08 
-.24 

135.25 
- .. 06 

.02 
- .. 42 

pel~cent 

difference 

.00 
-8.20 

3.30 
-.40 

.20 
-.10 

-9.50 
5.00 
-.40 

-1.70 
.50 
.40 

-.60 
-1.40 

.20 
-3.10 
-.50 

-2.10 

slope (a) 

1..00 
1.01 

.98 
1.00 

.86 

.97 
1..04 
1.02 
1. 01 

.98 
1.00 
1.00 
1.01 

.99 
1.00 
1.02 
1.00 

.96 

(a) slope = 1 implies no consistent 
source of bias between PUS and 4th Count 



Table 11. 
Mortality Rates and R Squared 

mortality rate (a) R squared 
mean std dev 

males 
35-44 D 350 ~ 73 I .69 
45-54 D 896 ~ 146 I • 71 
55-64 I I 2197 0 255 .61 
65+ 73700 580 .63 

females 
35-44 0 192 I 30 I -~ .48 
45-54 0 447 I 56 I I .43 

-...! 55-64 D 988 ~ 108 l I .42 
w 

65+ 5002 D 461 .,63 
males 

35-54 D 623 ~ 110 .73 
55+ 4698 0 415 .67 

females 
35-54 0 321 I 43 .53 
55+ I I 3164 0 324 Ln ] .62 

males + 
35-54 D 469 I 69 
55+ I I 3849 0 335 
35+ c=J 2019 0 316 I 

(a) avg annual total mortality per 100#000 



Table 12A. 
Males, U.S. total 
Path Coefficients and R Squared 

County PUS 

area 
-.02 ~ -.09 I I 

Eop_1970 .02 .04 
% m1gr .08 t .05 
% ur an .12 t -.10 ~ # 
% black .16 t .28 I 
% forei~n -.01 I -.05 
div rat ~ .07 t .11 t 
% < 5 yr I . 07 t -.11 J % ) 65 ~r -.02 -.08 

.._J % < 130 0 0 .08 .06 

.&::> % ) 115000 -.21 1m t -.22 t 
%college -.21 t -.37 t 
% manuf .04 -.02 
% prof .06 .11 
% no slumb .08 .05 
% )1. 1/rm -.07 .00 
% owner -.15 t -.35 t 
Jan temp .17 t .08 
JUly temp -.12 
Jan prec.'!-p .01 ~ .04 ~ul ~r~c1p .10 t .19 t 

lev t1on .03 .09 
R squared D .32 c=J .71 

t indicates p-value (.02 



-.] 

Ul 

area 
eop. 1970 
% m1~r 
% ur!lan 
% black 
~~ foreiqn 
div rate 
% < 5 yr 
% ) 65 yr 
% < 13000 
% ) 115000 

% college 
% manuf 
% prof 
% no plumb 
% )1.~1/rm 
% owner 
Jan temp 
JUly temp 
Jan prec~p 
.1ul pr~c1p 
~levat1on 

R squared 

Table 12B .. 
Males$' West 
Path Coefficients and R Squared 

County PUS 

.06 -.15 
.. 02 -.13 

-.04 f -.28 i .08 -.30 
.24 .. 14 
.. 33 t .. 07 

.. 05 .42 

.08 - .. 27 ~ 

.09 .25 J .08 -.59 I 
-.31 -.54 

-.07 
-.10 ~ -.35 t .01 

-.04 .27 
- .. 01 .07 
-.02 

-.26 l .56 .19 
-.08 .17 

.15 .31 
.19 .21 

f .12 .09 
-.04 .32 

.35 c:=J .. 88 

t indicates p-value (.02 

I 
t 

t 



Table 12C. 
Males, Midwest 
Path Coefficients and R Squared 

County PUS 

area -.09 l ~ .12 
pop _1970 .. 04 .25 t 
~ m1~r .. 03 ! . 04 % ur an .. 08 .. 08 
% black ' .. 07 .10 
% foreiqn . 11 .02 
div rate 0 .. 09 t .. 08 
% < 5 yr - .. 18 a t - .. 11 I 
% ) 65 ~r - .. 32 # -.14 

..._J % < 530 0 -. 02 ~ iii <> 05 01 % ) 515000 -.19 t -.36 

%college -.54~ t -.441 % manuf -.0 ~ .21 
% ~rof .32 t .29 
% o ~lumb .24 t .23 
% ) 1. 1/rm -.01 ~ 

-.13 } .15 % owner -.12 
Jan temp -. 00 I .01 
JUly temp - .. 09 ~ .17 
Jan prec~p .15 .. 24 
~ul pr~c1p -.04 ~ .. 03 

levat1on -.09 -.11 
R squared 0 .30 CJ .78 

t indicates p-vatue (.02 



Table 12D. 
Males? South 
Path Coefficients and R Squared 

Count!:J PUS 

area 
l.01 -.02 r EOP .1970 -.01 .09 

~ m1~r .06 -.02 
% ur an .16 # 

, .16 % black u + 13 # -.01 
% forei~n -.12 ~ # -.37 # 
div rat .09 # -.04 
% < 5 yr I .,13 # -.02 
% > 65 ~r .01 .00 

-....! % ( :130 0 0 .13 J .20 -....! % ) 115000 -.15 m t - .. 47 # 

%college -.17 ~ t ~ .09 % manuf .. 15 # .10 
% ~rof ! .05 
% o ~tumb .02 
% )1 .. 1/rm -.08 ~ ~.01 % owner - .. 15 t - .. 38 
Jan temp .22 t .32 
JUly temp -.13 \ - .. 12 
Jan prec~p -.12 -.14 
~ul pr~c1p .. 08 l? .. 33 t 

tevat1on .04 .. 11 

R squared D .35 CJ .66 

# indicates p-vatue (.02 



Table 12E. 
Mates$> Northeast 
Path Coefficients and R Squared 

County PUS 

area .01 -.06 ~ 
Eop_1970 .01 .04 
% m.tgr .26 t .18 
% ur an .12 B.03 % black .19 t .31 
% forei~n .19 .. 46 t 
div rat .02 I .00 
% < 5 yr .17 t .03 
% > 65 ~r .. 13 -.27 I 

-....] % ( 130 0 D .. 56 # D .61 # 
00 % ) 115000 - .. 24 m -.78- # 

% col lege .19 -.49 
% manuf -.01 -.14 
% ~rof - .. 20 p .53 
% o ~tumb - .. 21 .09 
% )1., 1/rm -.01 -.32 
% owner -.18 t -.34 ~ t 
Jan tern~ .40 t .39 
JUly te p -.22 , - .50 
Jan prec~p .04 
JUl pr~Clp -.05 
elevat1on -.01 ll .11 

R squared 0 .44 D .82 

# indicates p-vatue (.02 



-...] 

\,0 

area 
Eop_1970 
,~ m1~r 
% ur.Dan 
% black 
% foreiqn 
div rate 
~~ < 5 yr 
% > 65 vr 
% < 13000 
% ) 115000 

%college 
% manuf 
% prof 
% no plumb 
% ) 1 .. rcH/rm 
% owner 
Jan temp 
JUly temp 
Jan prec~p 
JUL pr~Clp 
elevat1on 
R squared 

Table 13A. 
Females~ U.S. total 
Path Coefficients and R Squared 

County 

-.0l l 02 
b •• 12 
0 + 07 
I• ., 04 

- .. 00 l 07 
u •• 16 
u • 06 

-.08 ~ 
-.12 ~ 

-.20 '.02 
~ .18 

: .08 
-., 07 ~w 

-.20 ~] .11 

-.12 , 
-.04 .02 
-.06 

0 .11 

# 

t 
t 

t 

t 

t 

t 
t 
t 

t indicates p-value (.02 

PUS 

-.14 

-.02 
- .. 22 

-.17 

-.61 
- .. 2 

.05 

.. 16 

.14 
.. 22 

.08 

.08 

.. 07 

.13 

- .33 
- .. 38 

1.05 
.18 
.16 

D .43 

t 

t 
t 
t 

t 
t 

t 
t 
t 

t 
t 



co 
0 

area 
~op _1970 
:% ml{4r 
% urnan 
% black 
% foreiqn 
div rat~ 
% < 5 yr 
% ) 65 yr 
% ( 13000 
~~ ) 115000 

%college 
% manuf 
% prof 
% no plumb 
% )1.~1/rm 
% owner 
Jan temp 
JUly temp 
Jan prec~p 
JUt pr~Clp 
elevatlon 

R squared 

Table 13B. 
Females, West 
Path Coefficients and R Squared 

County 

~ .. 00 
-.12 1 00 

I + 

-.28l .20 
.16 
.15 

-.26 ~ .01 

- .. 25 ~ .00 

0 .09 
0 .18 

-. 27 Jj 
-.45 E=J .69 

-.16 ~ 26 
~ :24 

-.04 J 
- .. 13 b .33 

0 .33 

t indicates p-value (.02 

PUS 

-.12 
-.13 
- .. 20 
-.07 

- .. 28 
-.01 

.37 
.55 
.66 

.28 

.30 
.02 
.26 
.17 

-· .53 

.01 
.62 

CJ .88 

t 
t 

t 



Table 13C. 
Femate.s, Midwest. 
Pat.h Coefficient..s and R Squared 

County PUS 

area -.00 I .19 
EOP _1970 .03 .11 
/t m1gr .08 .14 
% ur an 0 .11 .06 
% btack -.05 , .25 
% foreign .02 .04 
div rat.e -.03 J .. 11 
% ( 5 yr .00 .10 
% ) 65 ~r -.16 .02 

00 % ( 130 0 ~ .. 06 -.12mJ 
I-' % ) 115000 -.09 9 -.39 

% college -.25 , # -.62 
% manuf .12 p·21 % ~rof .11 .49 
% o ~lumb .. 12 .10 
% ) 1 .. 1/rm .. 04 
% owner -.27 ~ # 
Jan temp .. 16 
JUly temp -.21 i - .. 34 ~ Jan prec~p .. 05 .22 
~ul ~r~c1p - .. 10 .. 09 

lev t1on - .. 12 - .. 21 I 
R .squared 0 .. 19 D .57 

# indicat.es p-value ( .. 02 



00 
N 

area 
fj0p.1970 
% m1~r 
% urnan 
% black 
% foreiqn 
div rate 
% < 5 yr 
% ) 65 yr 
% < 130~0 
% ) 115000 

% college 
% manuf 
% prof 
% no -plumb 
% )1.01/rm 
% owner 
Jan temp 
JUly temp 
Jan prec-!-p 
.JUl pl"~Clp 
elevatlon 

R squared 

Table 13D. 
Femates_. South 
Path Coefficients and R Squared 

County 

.04 

.02 
.08 
.14 # 
.07 

-.04 ( 
~ .06 .25 # 

.14 t 
-. 07 ~ 
-.13 

-.15 \ .01 
.18 t 

~ .06 
-.05 ~ - .. 13 

. .12 
-.21 ~ # 
-.16 # 

.04 
-.09 

0 .11 

# indicates p-vatue (.02 

PUS 

~ .. 06 
-.09 If .15 

-.15 ICJ .58 
-.16 

.09 
.03 ~ 
.10 

-.40 !miD .17 

-.01 
-.19 

-.11 
-.21 

-.20 

.16 

.29 

.44 
.06 

.58 
.30 

D .. 48 

# 

t 
t 



area 
EOP _1970 
% m1~r 
% u:r an 
% black 
% foreign 
div rate 
% < 5 yr 
% > 65 ~r 

00 % < S30 0 
w % ) 515000 

% cottege 
% manuf 
% ~rof 
% o ~lumb 
% )1. 1/rm 
% owner 
Jan temp 
JUly temp 
Jan p:rec~p 
~ut p:rE?Clp 

levat1on 
R squared 

Tabte 13E. 
Females~ Northeast 
Path Coefficients and R Squared 

County PUS 

-.04 ~ -.22 
.03 1 .18 .40 # .22 
.21 -.04 

.. 12 -.02 
-.01 I -.15 

I .00 -.05 . 
-.10 I ~ • 07 -.12 .11 p .69 t p .62 
-.17 -.16 

~ .03 -.0 
-.09 TI .45 

-.74 # 

-.141 .26 -.03 l3 .40 -.08 .43 
-.06 
-.10 
-.05 lJ .18 

D .28 D .65 

# indicates p-vatue <.02 



us 
county 
PUS 

U5(1) 
county 
PUS 

00 
.!::> 

west 
county 
PUS 

south 
county 
PUS 

east 
county 
PUS 

midwest 
county 
PUS 

-3 .. 7 
-2 .. 6 

"fable 14A. 
Regression Coefficients 
Total Suspended Particulate 

males 

I I 
I 

females 

I .. 4 
- .. 7 

-2 .. 4 , 
- .. 5 I .8 

-1 .. 1 

-7 .. 2 II -9 .. 2 ~ 
~ 2 .. 5 - .. 2 

fig 2 .. 3 
I 

.. 7 
-6 .. 0 -.6 

I 8 .. 5 g 1 .. 9 
8 .. 0 t -3 .. 6 I 

-1 .. 4 I I 2 .. 6 
I 2 .. 5 2 .. 4 

t indicates p-value ( .. 02 

t 



us 
county 
PUS 

US( 1) 
county 
PUS 

00 
Ul west 

county -4.2 
PUS 

south 
county 
PUS 

east 
county 
PUS -14 .. 4 

midwest 
county 
PUS - .. 7 

Table 14B. 
Regression Coefficients 
Sulfur Dioxide 

males 

1 11.3 t 
7.5 t 

r 7.1 
4.3 

~ 
Ill 18.7 

I 24.8 I 
28 .. 2 

~ 2.1 

l 
1. 1 

# indicates p-value <.02 

females 

I 7.4 t 
m 6.5 I 

I 4.1 I 
3.9 I 

~ 2 .. 5 
5 .. 8 

~ 2 .. 0 
7.2 

~ 1 .. 4 
5 .. 0 

- 3 I -1:6 



us 
county -2.3 
PUS 

US(!) 
county -2.6 
PUS 

00 
Cl' west 

county 
PUS -5.6 

south 
county -1.6 
PUS 

east 
county -6.8 
PUS 

midwest 
county -6.8 
PUS 

Table 14C. 
Regression Coefficients 
Nitrogen Dioxide 

males 

I 
B 1.4 

m§ 1 .. 2 

Ill 10.1 
II 

\ 1.6 

~~. 6.5 

• # 
0 2.1 

# indicates p-value (.,02 

females 

-2.0 , I 
-.3 

-2.1 ~ I 
.,0 

I 
-3.4 I 

3 .. 6 

-1.1 \ 1 .. 0 

-3.1 ~ 1. 7 

-2.6 \ 
2 .. 8 



Table 15. 
Bias Incurred Through Aggregation 

county PUS bias 
ratio 
(a) 

area -.0 I I .0 4.8 
Eop.1970 .0 .0 1.6 
% m1gr 9.1 4.5 2.0 
~{ ur an 4.5 -2.3 2.0 
% black 12.0 15.7 .8 
% forei~n -1 .. 1 -3 .. 0 .4 
div rat 42 .. 3 39.7 1.1 
% < 5 yr 65.7 -81 .. 3 .8 
% ) 65 !:lr -7.3 -18.5 .. 4 

co ~~ < 13000 
-33 + 7 i 11.4 

-17.0 J 
7.0 1 .. 6 

-...1 % ) 115000 2.0 
% college -57.5 -61.3 , .9 
% man·ur 

-16.6 J 

3.8 -1.3 2.9 
% ~rof 12.9 15.1 .9 
% o ~tumb 7.7 5.0 

-120 .. 8 ~ 1 .. 6 
% )1. 1/rm i .. 1 
% owner -21.6 -22.2 m .8 
Jan temp -3.1 

I -4.7 I I .. 7 
JUl temp_ 1.8 3.6 

I 
.. 5 

Jan prec+p .7 6 .. 4 .1 
~ul ~rec1p ! .1 1.4 .. 0 

lev tion .0 
-2.6 I • 1 

I 
.5 

TSP -3.7 I 1.5 
502 11.3 7 .. 5 1..5 
N02 -2.3 1.4 -1.7 I 

(a) equal to 1.0 if no bias exists. 



00 
00 

TSP 

males 

females 

502 

males 

females 

N02 

males 

females 

Table 16A. 
Regression Coefficients 
Counties 

stomach cancer 

-.05 

.00 

~ .20 

- .. 03 I 

- .. 08 I 
-.03 I 

accidents 

-.76 1 
-.sa 1 

I .. 00 

- .. 03 

-1.31 -
# indicates p-vatue (.02 

I 

I 



OJ 
1..0 

TSP 

males 

females 

502 

males 

females 

N02 

males 

females 

Tabte 16B. 
Regression Coefficients 
PUS Areas 

stomach cancer 

0 + 19 

-.01 1 

-.02 

.02 

-.04 

-.01 

# 

# indicates p-vatue (.02 

-.67 

-.66 

accidents 

~ .15 

0 .19 

1 .01 

~ .08 



FIGURE:; 

Figure 1. Residual values (standard deviations) ordered by 
county population, for males (ages 45-54): 
county level data. 

Figure 2. Residual values (standard deviations) ordered by 
county population, for females (ages 45-54): 
county level data. 

Figure 3. Residual values (standard deviations) ordered by 
population of PUS area, for males (ages 45-
54); PUS level data. 

Figure 4. Residual values (standard deviations) ordered by 
population of PUS area, for females (ages 45-
54); PUS level data. 

Fiaure 5. Expectation of life (at age 0) in years for white 
males, based on 1968-197 2 age-specific total 
mortality rates. 

Figure 6. Expectation of life rat age 0) in years for white 
females, based on 1968-1972 age-specific total 
mortality rates. 

F j aure 7. Locations of monitoring stations measuring TSP 
( 1974-·1976). (All TSP measurements are based 
on a 24-hour sampling interval.) 

Figure 8. Locations of monitoring stations mea.sur ing S02 
with 24-hour sampling interval (1974-1976). 

F 1a ur e 9. Locations of monitoring stat ions measuring S02 
w.i th one··hour sampling interval ( 1974-1976). 

Flour e l 0. Loca t 1 ons of mon 1 tor ing stations measuring N02 
w1th 24-hour sampling interval (1974-1976). 

FJC!tlre 11. Locations of monitoring stations measuring N02 
w1th one-hour sampling interval (1974-1976). 

90 
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Figure 5. 
Expectation of life 
at Age 0 (years) 
White Males. 1968-1972 
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Figure 6. 
Expectation of Life 
at Age 0 (years) 
White Females9 1968-1972 
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APPENDIX A: SOURCES OF AIR QUALITY AND "CONTROL" DATA 

The air quality and "control" data used in this analysis 

came from Seed is, the Socio- Economic Environmental Demo-

graphic Information System maintained by Lawrence Berkeley 

Laboratory [20]. The data in Seed is came or iginal1y from 

three separate sources: 

Items 1-17 (Seedis file F): 
1977 County and City Data Book [5] 

Items 18-22 (Seedis file V): 
1977 Area Resource File (6] 

Items 23-25 (Seedis file Z) 
1974-1976 Air Quality: County vs PUS Area [21] 

Listed below for each data item are: 

Cal the item number: 

(bl a brief description~ 

(c) the Seedis database and data element code: 

(d) where applicable, the corresponding item number on pages iv-vi 
of [ 5 J ; 

(e) where applicable, the starting column position on pages 27-82 
of [ 6] . 

1. Land Area in Square Miles, 1970 
F.CCDBC0004 

2. Population, 1970 
F.CCDBC0016 7 

3 . Net Migration Percent Change, 1970-1975 
F.CCDBC0031 13 

4 . Population, Percent Urban, 1970 
F.CCDBC0041 8 

5. Population, Percent Black, 1970 
F.CCDBC0056 9 

6. Population, Percent Foreign Stock, 1970 
F.CCDBC0077 10 
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7. Divorce Rate Per 1000 Population, 1970 
F.CCDBC0117 27 -----

8. Persons, Percent Under 5 Years, 1970 
F. CCDBC0060 -----

9. Persons, Percent 65 Years and Over, 1970 
F.CCDBC0066 -----

10. Families, Percent With Income Less Than $3000, 1970 
F.CCDBC0234 -----

11. Families, Percent With Income $15000 And Over, 1970 
F.CCDBC0239 52 -----

12. Persons 25 Years or more, Percent With 4 Years College Or more, 
1970 
F.CCDBC0129 -----

13. Employed, Percent in Manufacturing, 1970 
F.CCDBC0185 -----

14. Employed, Percent In Professional & Managerial Occupations, 1970 
F.CCDBC0207 -----

15. Occupied units, Percent Lacking Some or all Plumbing, 1970 
F.CCDBC0308 73 -----

16. Occupied units, Percent with 1. 01 or More Persons/Room, 
F.CCDBC0310 74 -----

17. Occupied Units, Percent Owner Occupied, 1970 
F.CCDBC0344 72 -----

18. January Temperature, 0.1 Degrees, 1976 
V.C.6936 12120 

19. July Temperature, 0.1 Degrees, 1976 
V.C.6940 12124 

20. January Precipitation, 0.01 Inches, 1976 
V.C.6948 12132 

21. July Precipitation, 0.01 Inches, 1976 
V.C.6952 

22. Elevation, Feet, 1976 
V.C.6970 

12136 

12154 

1970 

23. Total Suspended Particulate, Geometric Mean Concentration, of 
County at Population Centroid, Micrograms per Cubic Meter, 
1974-1976 
Z.GMEAN.CNTRD.SPD -----

24. Sulfur Dioxide, Geometric Mean Concentration, of County 
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at Population Centroid, Micrograms per Cubic Meter, 1974-1976 
Z.GMEAN.CNTRD.SDT -----

25. Nitrogen Dioxide, Geometric Mean Concentration, of County 
at Population Centroid, Micrograms per Cubic Meter, 1974-1976 
Z.GMEAN.CNTRD.NDT -----
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APPENDIX B: Incomplete Model Bias 

The case of three independent variables is presented; 

the general case of k independent variables follows the same 

reasoning. Let the independent variable y have the follow-

ing covariance structure: 

f of 
.E = I 

1
-
0 12 

and 

The estimates of the regression coefficients when variable 

x 3 is omitted are 

and the incomplete model bias caused by omitting x3 is 

given by the expression 

where b
3 

is the regression coefficient associated with x
3 

Therefore, the unbiased estimates of the regression coeffl-

cients are b-8. The regression sum of squares can be 

expressed as a sum of the contributions from the included 

and excluded variables or regression sum of squares: 

The term 

B-1 



represents the contribution from x3 and will not be observed 

2 
when x3 is omitted from the model. The term R ( 3 ) is the 

squared multiple correlation coefficient where x1 and x2 are 

regressed on x
3

• This form of the regression sum of squares 

demonstrates that the "explained" variation is always 

reduced when the model is incomplete. Furthermore, it 

should be noted that the incomplete model bias and the 

reduction in the regression sum of squares will be small 

when b3 or a~ is small. The term [ 1-R7 3 ) ] shows that the 

analysis is relatively unaffected when the terms already in 

the model ( x1 and in this 

with the omitted variable (i.e., 

.B-2 

case) are highly correlated 

2 l-R( 3 ) close to 1.0). 



APPENDIX C: PRINCIPAL COMPONENTS OF AGE DISTRIBUTION 

The age distributions for males and females can be 

represented by principal components P1 and P2 , defined as 

follows: 

i=ll 
Pl (m) ::: I: c1 .(m) x. 

i=l I I 

i=ll 
pl (f) = E c1 .(f) xi 

i=l I 

i=ll 
P2 (m) ::: r: c2 .(m) xi 

i =1 I 

i=ll 
p2 (t) :::: I: c2.(f) Xi 

i=l I 

where X. is the fraction of the population in the ith' age 
I 

category. The definitions of the 11 age categories, and the 

coefficients c li and c2i are as follows: 

Ages c
1

.(m) I . c li (f ) c
2

.(m) 
I . c 2i (f ) 

l 0 . 77 .84 -.37 -.23 
2 1-4 .85 .89 -.28 -.19 
3 5-14 .88 .87 --.04 -.01 
4 15-24 .38 .65 -.34 -.15 
5 25-34 .80 .89 -.38 -.16 
6 35-44 .89 .87 -.06 -.70 
7 45-54 .75 .60 .45 .65 
8 55-64 .42 .19 .83 .91 
9 65-74 .18 --.01 .91 .91 
10 75-84 .13 -.06 .93 . 95 
11 85+ .10 -.08 .85 .85 
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